How Students's'Máthh

 Beliefs Influence Their Math Course Selection at Oxnard CollegeRegardless of good intentions, we have created math hurdles because we dodo not believe in the abilities of the students we serve.

Rigorous algebraic skills are not prerequisites an introductory statistics.
Too many students with strong math abilities self-place into lower-level math courses believing they need to build up their math skills, regardless of their successful completion of threeyears of HS college prep math courses or their academic goal.

Overview

- Oxnard Community College e
- Hispanice Senviingglisstitutete

人 Less than 50% of OC students are enrolled in transfere-level math courses
-75\% of OC students plan to transfer to a 4 -year college or university

- California Assembly Bill 705(Irwin, 2017))
- "to maximize the probabilityty that theestuddentwilliHnetateanahcbouplepbettranisfasferlevel counssewavklinrEhgligstislarachchatatmeatiaskics within aionee-year timeframee"
- Prohilbitting CCC "from requiring students to enroll in remedial English orh or mathematics coursework unless placementresearoh ... shows that those students are highly unlikely to succeeded in transfer -level coursework""
- Encounarges devedtoppnoentabeddoratiorefeform

Focus of Study

- How do students' math beliefs relate to various studentent demographics?
- How do students choose their current math course? e?
- If corequisite courses benefit students' math beliefs fs

Overview

- Historical perspective of developmental math reform rm
- Understanding the complexity of Hispanic Serving Institutionsions
- Three-Math Beliefs scale
- Math Confidence Scale
- Math Value Scale
- Class Devaluation
- Math Value
- Health Belief Model
- Math Anxiety
- Discouraging Word

Historical Perspective off Developmental MáthlReformm Placement Practicee

- Multiple Measures for Placementt Challenges

- Many students do not meet with a counselor for advice (Bailey \& Cho, 2010) 10)
- The primary use of a placement test can misplace students ((Melguizo et al., 2016; Ngo \& Kwon, 2015).
- Students that completed three years of HS college preparatory math areare eligible for transfer r-level math courses.
- If students have a low level of math confidence, they may under place e themselves in a developmental math course

Problems of DevelopmentabCOurse Sequences:

- Low throughput ratete - rate of success from developmental math coursese through transfere-level course (Hern, 2012)
- Hypothetical scenario: 75% pass rate and a 75% persistence rate
- 100 students enroll in three levels below, and 75% (75 students) pass, and 75% (56 students) persist
- 56 students enroll in two levels below, 75\% (42 students) pass, and 75\% (32 students) persist
- 32 students enroll in one level below, 75% (24 students) pass, and 75% (18 students) persist
- 18 students enroll in a transferr-level, 75\% (13 students) pass
- In other words, $.75 \times .75 \times .75 \times .75 \times .75 \times .75 \times .75=(.75)=.13$ is the throughput rate, exponential decay
- These are known as exit points

AB 705 Pliacement Rules

California Community Colleges

Academic Senate

for California Community Colleges
LEADERSHIP. EMPOWERMENT. VOICE,

High School Performance Metric for Statistics/Liberal Arts Mathematics	Recommended AB 705 Placement for Statistics/Liberal Arts Mathematics
HSGPA ≥ 3.0	Transfer-Level Statistics/Liberal Arts Mathematics
Success rate $=75 \%$	No additional academic or concurrent support required for students
HSGPA from 2.3 to 2.9	Transfer-Level Statistics/Liberal Arts Mathematics
Success rate $=50 \%$	Additional academic and concurrent support recommended for students
HSGPA <2.3	Transfer-Level Statistics/Liberal Arts Mathematics Additional academic and concurrent support strongly recommended for students
Success rate of 29\%	

High School Performance Metric BSTEM Mathematics	
HSGPA ≥ 3.4	Recommended AB 705 Placement for BSTEM Mathematics
OR HSGPA ≥ 2.6 AND enrolled in a HS Calculus course Success rate $=75 \%$	Transfer-Level BSTEM Mathematics No additional academic or concurrent support required for students
HSGPA ≥ 2.6 or Enrolled in HS Precalculus	Transfer-Level BSTEM Mathematics Additional academic and concurrent support recommended for students
Success rate $=53 \%$	Transfer-Level BSTEM Mathematics Additional academic and concurrent support strongly recommended for HSGPA ≤ 2.6 and no Precalculus students
Success rate $=\quad 28 \%$	

1 Note: The BSTEM table presumes student completion of Intermediate Algebra/Algebra 2 , an equivalent such as Integrated Math III, or higher course in
high school. Students who have not completed Algebra 2 or higher in high school but who enter college with intentions to major in STEM fields are rare. high school. Students who have not completed Algebra 2 or higher in high school but who enter college with intentions to major in STEM fields are rare.
However, good practice suggests they should be informed that Algebra 2 is highly recommended as preparation for a STEM-oriented gateway However, good practice suggests they should be informed that Algebra 2 is highly recomme
mathematics course and that their likelihood of success will be higher in a statistics course.

Hispanic Servingolnstitutionn

- Two- and four-year colleges and universities with at least 25% Hispanic undergraduates (Higher Education Act, 1998) 8)
- With a minimum of 50% of students at the poverty ty-level qualify to apply for and receive grants from Higher Education Act's Title III III and Title V
- Serve students by providing
- Academic and student services relevant to the needs of the students, their eir parents, and their communityt
- Curriculum that reflects Latinx cultural, values and experiences (Garcia, 2019) 19)

Hispanic Servingolnstitutionn

- Latinx students
- May be native -born or foreign n-born
- May have parents
- Who lack English skills
- Earn low pay for low -skill service employment tt
- Do not understand the higher education process (Laden, 2001; 2004 04)
- May experience low expectations from peers, instructors, and educational nal institutions (Cerezo \& McWhirter, 2012)
- In 2011, 43.9\% of Latinx college students attended a two -year college
- compared to 24.1% of Whites, 32.9% of African Americans, and 17.3% of Asian Americans (Bauman, 2017)
- In 2017, 17.2\% of Latinx adults had at least a bachelor's degree
- compared to 53.9\% Asian Americans, 38.1\% Whites, and 24.3\% of African Americans (Hispanic Association of Colleges and Universities, 2017) 7)

Hispanic Servingolnstitutionn

- First-generation students - neither parent completed a bachelor's degreeee
- Disadvantages include lack of knowledge of of
- high school academic preparation n
- cost of college education, the application process ss
- degree expectations (Pascarella, Pierson, Wolnieak , \& Terenzini, 2004).
- Desire go to college but burdened with imposter syndrome (ie (McMurtrie e, 2019)
- Low-income students - eligible for Pell Grants and the California Promise Grant nt
- less likely to receive financial support from parentsnts
- more likely to have family and work responsibilities (es Engle \& Tinto, 2008)
- First-generation and low -income students
- less likely to interact with faculty and use support services ces
- more likely to be older, female, disabled, people of color, non on-native English speakers, single parents, have dependent children n
- have more of these risk factors than traditional college students (ts (Engle \& Tinto, 2008)

Hispanic Servingolnstitutionn

- Pay attention to improving services, access and success in highere education for all citizens, particularly those who have been en previously underrepresented in higher education, such as firstirstgeneration, Iow income, non n-traditional students, and students of of color (Engle \& Tinto, 2008; Garcia, 2019; LLaden, 2001;2004)
- Share national interest for the United States to remain competitive tive in the global knowledge economy (Engle \& Tinto, 2008) 8)

Three-Math Beliefs (Hendy, Schorschinsky, \& Wade, 2014)

- Math Confidence - Bandura's (1997) Self-Efficacy Theory
- Value of Math - Expectancy-Value Theory
- Math Barriers - Health Belief Model

Self-Efficacy

- A person's belief or perception of theireir ability to accomplish a goal or desired d outcome (Bandura, 1997)
- Not concerned with the actual skills a a person has, but rather their perceptionon of those skills (Bandura, 1977; Bandura, 1986;Pajares \& Miller, 1995)
- Math self-efficacy scales can discoverthe need for students to develop positive attitudes toward math, build ild
 confidence in ability to learn math, and reduce anxiety (Hall \& Ponton, 2005)5)

Expectancy-Value Theorem

- Expectancy and value theory are defined as a person's anticipation thatat their performance will be followed by success or failure (Atkinson,1957)
- Expectancy: Individual confidence,, self-efficacy
- Achievement value: the shortit- and long-term value of the task
- Expectancy and value impact a person's choice, effort, persistence, and performance and can be explained ed by their belief in their ability to perform a given task and the extent that they value the task (Wigfield \& Eccles, 1992,2000).

Health Belief Módebl

- The Health Belief Model (HBM) was developed in the 1950s to explain why individuals failed to perform healthlthrelated behavior. It hypothesized that at behavior depends on the value a a person places on a goal and the person's belief that a given action will
 achieve the desired goal (Rosenstock, 1974)
- HBM suggests that perceived barriers to performing a suggested behaviorior may prevent individuals from changing thein behavion despite the the perceived value of the suggested behavior (expectancycy-value theory) and the perceived confidence in doing the behavior (selfelf-efficacy) (Hendy, Schorschinsky, \& Wade, 2014)

Three Math Beliefssscales

Hendy, Schorschinsky, and Wade (2014) studied the math beliefs of algebra students ts at a university on the East Coast. The ThreeMath Belief Scale are guided by

- Math Value Scale which derived from concepts of expectancy-value theory
- Math Confidence Scale which derived from concepts of self-efficacy theory

- Math Barrier Scale which derived from concepts of the health belief model

Research Questions

The overarching goals for this study are to understand how students nts choose their math course, and study the effects, if any, of a corequisite ite course on students math beliefs.s.

1. How do OC students math beliefs relate to their gender, agege, ethnicity, family educational background, financial aid status, tus, HSGPA, the highest math course taken, and their education goal?al?
2. How are students' math beliefs related to their math selfelfplacement?
3. How do students' math beliefs change after eight weeks of math th instruction with or without a corequisite course? se?

Research Design

This study will collect data from students enrolled in entryntry-level transferable math courses, and nonn-transferable Associate's degree applicable math coursess
\Leftrightarrow Research question one and two are a non-experimental causal-comparative quantitative design

- Research question two includes an embedded explanatory qualitative component
\Leftrightarrow Research question three is a quasi-experimental pre-and post-test design

Data Collectiom

- The first research question will üse quantitative methods utilizing zing the three math beliefs survey and a demographic questionnaire ire administered during the third week of the 18 18-week semester
- The second research question uses mixed methodsls
- For the quantitative portion, the three math beliefs survey and students'nts' current math course
- For the qualitative portion, the survey will include two open pen-ended questions
- The third question will also use quantitative methods from the math ath belief scales measured during.
- Week three for pre -survey
- Week eight for post l-survey

Three MathBeeliefsSSurveyy

Hendy, Schorschinsky, and Wade's (2014) three math beliefs survey, as revised by Holm-Smith and Lee (2018)

- The Math Value Scale has two subscales
- Class Devaluation with seven items
- No Future value with three items.
- The Math Confidence Scale consists of six items.
- Math Barrier Scale has two subscales
- Math Anxiety with eight items
- Discouraging Words with three items.
- The open-ended questions on the survey instrument
- What advice would you give a student who is deciding what math course to take next semester?
- Is this the right math course for you? Why or why not?

GuidingrResearch Questionss

1. How are the math beliefs of student attending an HSI community college related to their gender, age, and ethnicity, family educational background, and financial aid status?
2. How are student math beliefs related to their math course enrollment, HSGPA, highest math course taken, time elapsed since their last math course, and their education goal?
3. How, if at all, do student math belief change after eight weeks of math instruction?

DemographićQuestionnairere

- The demographic questionnaire asks students to selfelf-report
- High school grade point average (HSGPA)
- Highest math course takenn
- Who and what influenced their math placementent
- Major (BSTEM, SLAM, or Associate degree/not transferring) g
- Parents' educational level
- Pell Grant or California Promise Grant tt
- Gender
- Age
- Ethnicity
- The personal demographics are intentionally placed at the end of of the survey to mediate stereotype threat, the fears of confirminging negative stereotypes, and the affects an individual's ability toto engage in a task (McClain, 2018)

Participant Samplee

- Participants will be math students at Oxnard College in entry try-level transferable or Associates Degree applicable math courses, whose e math instructors grant permission to survey thein class, and nd students willing to complete the survey
- The entry level math courses offered at Oxnard College are:e:
- Math 5 - Intermediate Algebra for SLAM and Math 15 Intermediate Algebrabra for BSTEM
- One-level below transfer, Associate's degree applicablele
- Introductory Statistics with or without corequisite support port
- College Algebra with or without corequisite support ort
- Math for Elementary School Teachers
- Business Calculus with or without corequisite support.ort.

Data Analysis

- Descriptive statistics and goodness of fit will be calculated for each of of the five subscales of the three math beliefsfs
- Research Question One
- Independent variables = students' demographicsics
- Dependent variables = the five subscales of the math beliefs is
- An Analysis of Covariance (ANCOVA))
- Research Question Two

Quantitative analysis

- Independent variables = each of the five math beliefs subscales
- Dependent variables = students' course selection n
- A hierarchical multiple regression analysis is

Qualitative analysis of the open-ended questions

- Reviewed to discover general topics, group into major topics that will be coded.ded.
- Descriptions and themes will describe the qualitative narrative to communicate the findings dings (Creswell, 2019)
- Research Question Three
- The math beliefs' five subscales dưring week three and eight ht
- Dependent t-test for each of the subscales

579 Participants

84.3\% - First Generation
66.3\% - Pell Grant/CA Promise Grant Recipients
56.1\% - Females, 41.8% Males, $.5 \%$ Binary, 1.6% Declined to state

79.5\% - Latinx/Hispanic/Mexican American
6.8\% - Multi-Racial
3.3\% - Asian
2.4\% - African American
1.9\% - Decline to State
.5\% - Pacific Islander
.2\% - American Indian/Alaskan Native

Age range from 14 to 67 years of age 23.3\% - 18 and under
$29.3 \%-19$ to 20
24.2% - 21 to 25
$19.2 \%-26$ to 30
3.1\% - 30 and older

Educationad Background d
 \section*{Time Elapsed since Last Math Course}

Previous Math Coursee

5.7\%- Calculus
32.1\%- Transfer Level
19.9\%- One Level below Transfer r
23.0\% - Two Levels below Transfer r
6.7\%- Three Levels below Transferr

Majors

Associates Degree/Certificatee
Sociology and Liberal Arts,s,
Transfer
Business, Transfer STEM, Transfer
44.7\%- Less than a year
24.1\%- 1 year to 1^{112} y years
10.1\%- 2 years
$14.1 \%-3 \mathrm{t}$ to 9 years
$7.1 \%-10$ or more years

CurrentMáth Coursee

17.1\% Math SLAM
14.3\%- Math BSTEM
7.1\%- Math for Elementary School Teachersrs 18.3\%- Introduction to Statistics cs

Self-Reported HSGPA
32.1\%-HS A student
54.4\%- HS B student
12.3\%-HS C student
1.1\%- HS D student
15.5\%- Introduction to Statistics w/corequisite ite
3.8% - Business Calculus
5.9\%- Business Calculus w/corequisite e
12.3\%- College Algebra for ISTEM
5.7\%- College Algebra for STEM w/corequisitete

OC ParticipanttMathhBeliefss

Five Math Beliefs Subscale

	Mean (6 possible)
Math Confidence	4.47
Class Devaluation	2.81
No Future Value	2.38
Discouraging Words	1.93
Math Anxiety	3.23

- OC participants had a moderate level math confidence.
- OC participants valued learning by attending math class.
- OC participants believed earning good grades in math would positively impact their completion of a college degree, future employment possibilities, and/or their future financial well -being
- OC participants did not hear Discouraging Words from others about their math abilities
- OC participants did experience moderate levels of math anxiety

Significant Differences in Mathth Beliefs by Demographics

	First Generation Promise Grant	Pell or CA Gender	Age	Ethnicity	Five Math Beliefs Subscale	
Math Confidence	$\mathrm{p}=.026$	NS	$\mathrm{p}=.007$	NS	NS	First generation OC participants reported a lower level of Math
Class Devaluation	NS	NS	$\mathrm{p}<.001$	NS	NS	Confidence than their peers.
No Future Value	NS	NS	$\mathrm{p}=.022$	NS	NS	Pell or CA Promise Grant recipients indicating a higher level of Math
Discouraging Words	NS	NS	NS	NS	NS	Anxiety than their peers.
Math An xiety	NS	$\mathrm{p}=.014$	$\mathrm{p}<.001$	NS	NS	Males reported a higher -level of
math confidence than females.						

- Females reported valuing math and its future effect on their college success, employment, and financial wellbeing more than males.
- Males indicating a lower level of Math Anxiety than females

Significant Differences iniMathath Beliefs by Math Course

	Math SLAM	Math BSTEM	Math Elem Tchr	Intro Stats	Intro Stat Coreq	Bus Calc	Bus Clac Coreq	Coll Alg	Coll Alg Coreq
Math Confidence	NS	NS	NS	NS	$\mathrm{p}=.008$	NS	p < . 001	NS	NS
Class Devaluation	NS	NS	$\mathrm{p}=.009$	NS	NS	NS	NS	NS	$p=.022$
No Future Value	NS	$p=.004$	NS						
Discouraging Words	NS	NS	NS	NS	$\mathrm{p}=.04$	NS	NS	NS	NS
Math Anxiety	NS								

Significant Differences iniMathth Beliefs by Math Course
 Math Confidence Post Hoc Test

- Math SLAM participants have a lower level of math confidence than Math BSTEM participants.
- Math SLAM participants have a lower level of math confidence than participants enrolled in Introduction to Statistics with corequisite support.
- Math SLAM participants have a lower level of math confidence than participants enrolled in Introduction to Statistics.
- Introduction to Statistics participants have a higher level of math confidence than participants enrolled Introduction to Statistics with corequisite support.
- Math BSTEM participants have a higher level of confidence than participants enrolled in Business Calculus with corequisite support.

Significant Diffferences iniMathth Beliefs by Math Course

 Class Devaluation Post Hoc Test

 Class Devaluation Post Hoc Test}

- Math SLAM participants value learning in the classroom more than MATH BSTEM peers
- Participants enrolled in Introduction to Statistics with corequisite support value learning in the class more then their peers in Introduction to Statistics.
- Participants enrolled in Business Calculus with corequisite support valued learning math in the classroom more so then their peers in Business Calculus without support

Discouraging Words

- Math BSTEM participants experience discouraging words about their math abilities more than their peer in Business Calculus with corequisite support.

Significicant Différences in iMathth Beliefs by Educational Background

		$\begin{array}{c}\text { Last Math } \\ \text { Course } \\ \text { Taken }\end{array}$		
	HSGPA	Elape		

Significant Differences in Mathth Beliefs by Educational Backggound d
 Math Confidence

Math Confidence Post Hoc Test

- Math SLAM participants have a lower level of math confidence than Math BSTEM participants.
- Math SLAM participants have a lower level of math confidence than participants enrolled in Introduction to Statistics with corequisite support.
- Business majors experienced higher level of math confidence then their peers majoring in Sociology/Liberal Arts or studying to earn an Associate's degree or certificate.

Significieant Différences in iMathth Beliefs by Educationah Baokggoundd
 Math Value Scale

Class Devaluation Post Hoc Test

- Calculus participants valued learning in class less than their peers enrolled in Pre Algebra, Beginning Algebra, Intermediate Algebra and students enrolled in a transfer level course.
- Participants who had not taken a math course in at least ten years, valued class less than participants who had taken a course within the last two years.
- Business and STEM majors value class time less then Sociology/Liberal Arts Majors.

No Future Value Subscale

- No significant finds

Significant Differences in Mathth Beliefs by Educational Backgpound d

Math Barrier Scales

Discouraging Words Post Hoc Test

- Participants enrolled in Beginning Algebra experienced more often discouraging words than their Calculus peers.

Math Anxiety Post Hoc Test

- Participants who reported a HSGPA of C students had a higher level of math anxiety than their peers who reported a HSGPA of an A or B.
- Participants enrolled in an Intermediate Algebra or lower math class reported higher levels of anxiety than their Calculus peers.
- Participants who had not taken a math course within the last three years, experienced higher levels of math anxiety than their peers.

What helped select your math?

Participating students were asked to identify all deciding factor for course enrollment. The top five responses are:

	n	$\%$
Counselor	410	71.30%
Next course in the sequence	112	19.50%
Fits my schedule	59	10.30%
Friend	46	8.00%
Repeat	44	7.70%

Participants identify counselors as their number one resource to select a math course. Counselors are vital to the college matriculation for first generation, low income, nontraditional college students.

Student that identified the next course in the sequence may have learned from the counselor the math path required for their major.

What coursectotake?

The top two themes that participants advices their peers to select a math course was
(1) math abilities and (2) to consult with a counselor for advice. These are a few of their comments.

Math Abilities s

"use the last math you took in high school for guidance. If it has been a while, take ake a lower level.".
"take a refresher course or an easy class."
"In my opinion, every student who wants to do good in math should take Math Math SLAM first."
"I believe Math BSTEM is a great course to build foundation."n."

What coursectotake?

Counselors

"Talk to a counselor, let them guide you."."
"Your counselon is your best option. You do not have to decide on your own."wn." "See a counselor and relax."

Participants referred their peers to see a counselor to discuss placement, review high school transcripts, and educational planning. Also, they recommended to comeome prepared to the counselor appointment with transcripts, prior research and lots of ots of questions.

Why thissMáthlClàss?

Five hundred thirteen agreed with their math placement, while 34 did not.
Counselors did not reach the top of the list, but educational goals did. Counselors provide advisement for educational success. The two themes were math skills and ability, and educational goals

Math Skills and Abilities s

"Yes [I'm in the right math class], I, haven't done math in six years, and I do notnot remember much from high school."l."
"Yes, I am comfortable and understand the material well.ell."
"Yes, I can do the math problems."."
"I jumped into stats and without the support class, it would be tough."

Why thisisMáthlCIàss?

Educational Goal

"I need this class to graduate.""
"I need this math to transfer to a 44-year college."
"[This course] meets my gen ed and major."
"Yes, because I will be able to use stats when I open my business."."
"I want to know everything about math to have a successful career with math."ath."
"I want to help kids learn math," said a participant enrolled in Math for Elementaryntary Teachers.

Differencessimmeammathh beliefs, pre- and post-survey.

OC participants completed the Math Beliefs Survey at weeks three and eight of the semester. The purpose was to study the difference, in any, in the five Math Belief subscales after students had five additional weeks of instruction.

Mean Differencecof Pree- and Post-Math Belief Survey by MathCoursee

Math Confidence Level Declined for or

- OC Participants
- Introduction to Statistics with corequisite support ort Class Devaluation - Value Learning in Clàss Declined for
- Math for Elementary School Teachers decrease
- College Algebra with corequisite support rt

	oc Participants	$\begin{aligned} & \text { Math } \\ & \text { SLAM } \end{aligned}$	$\begin{gathered} \text { Math } \\ \text { BSTEM } \end{gathered}$	$\begin{aligned} & \text { Math } \\ & \text { Elem Tchr } \end{aligned}$	Stats	Stats Coreq	$\begin{aligned} & \text { Bus } \\ & \text { Calc } \end{aligned}$	Bus Calc Coreq	Coll Alg	Coll Alg Coreq
Math Confidence	$\mathrm{p}<.001$	NS	NS	NS	NS	0.008	NS	$\mathrm{p}<.001$	NS	NS
Class Devaluation	NS	NS	NS	$\mathrm{p}=.009$	NS	NS	NS	NS	NS	$\mathrm{p}=.022$
No Future Value	$\mathrm{p}=.004$	NS	$\mathrm{p}=.004$	NS						
Discouraging Words	NS	NS	NS	NS	NS	$\mathrm{p}=.04$	NS	NS	NS	NS
Math Anxiety	NS									

No Future Value - Value of Math in their Future Declined for for

- OC Participants values less
- College Algebra for STEM

Discouraging Words - Hearing Discouraging Words More Often Increase se

- Introduction Statistics with corequisite support ort

Math Anxiety

- No Significant change in means

Interpretation ofofinidingsgs

Insight into OC student Math Beliefs and how those influence students' math placement practices

- Participants from low-income backgrounds conveyed a higher level of math anxiety.
- The student survey showed participants enrolled in transferable math courses with corequisite support and advised their peers also to take the transferable math course with the corequisite.
- Similarly, students who planned to transfer and who were enrolled in a course one level below transfer also recommended their peers take a nontransferable math course for review, creating a sequence of a review course followed by the transferable course

Interpretation ofofinidingsgs

Most OC students' open-ended responses claimed that advice from counselors was essential in choosing their math course and reaffirming their correct math placement. Latinx, low-income, first-generation, nontraditional, and returning students stressed the importance of meeting with counselors as a vital step in matriculation. The findings of this study emphasize the importance of counselors addressing the needs of students who lack knowledge of the matriculation process and building confidence by recommending courses that align with students' major and academic needs.

The survey response showed counselors encouraged and validated participants' seats in transfer-level math courses for OC students, even though those students scored low on the Math Confidence scale, high on the Math Anxiety subscale, and high on the No Future Value subscale of the Math Beliefs survey. This study shows a vital and essential role counselor performance at an HSI; hence funding should be secured to maintain a manageable and productive ratio of counselors to students.

Survey Instrument t

Dear Math Student:

Thank you for agreeing to take this survey. The purpose of my study is to examine relationships between students' math courses and their math belieft, so we
may better inform students of their math placement options. This study has been may better inform students of their math placement options. This study has bee
approved by Fresno State and Ventura County Community College District.

The first phase of my study starts with questions about students' math beliefs, which consists of Math Value, Math Confidence and Math Barriers, two open-ended questions about your math placement, and general information about Oxnard

For the second phase, I will return with a similar survey to measure any change in your response to your math beliefs after eight weeks of instruction. The survey is nonymous, and all information will be kept strictly confidential and used for the sole purpose of this study. I am seeking your participation and will be asking other
Oxnard College math students to participate.

If you have any questions or if you would like to know more about my study,
feel free to contact me at the email address or phone number listed below Y Y feel free to contact me at the email address or phone number listed below. Your time by not completing the survey| Participation in this survey will not affect you rade in this course. Again, I want to assure you that your responses to the survey will be anonymous.

Thank you so much for taking the time to complete this survey.
Sincerely,
Lilia Ruvalcaba
805.986.5800

Growth Mindset vs. Fixed Mindset hitps:/voutu be/KUWn TJTmU
Growth Mindset vs. Fixed Mindset hitps://voutu, be/M1CHPnZIFmU
GRIT: Traits that Matter for School, Work, and Life https:/youtu bedvzle Puvo5o GRIT by Angela Duchworth | Animated CORE Message hitps:/voutu beesw Clle Edloi4 her Education: Russell McClair https://youtu, be/yiZOAEOO9BY

Survey Instrumentt

Math Value Scale

$\frac{\text { Instructions: Please use the six-point rating to report how much you agree or disagree with each }}{\text { math belief described }}$
1 - strongly $\quad 2$-disagree
2 -disagree $\quad \begin{gathered}3 \text {-someerhat } \\ \text { disagree }\end{gathered} \quad 4=$ someewhat $\quad 5$ agree
$\underset{\substack{\text { s. strongly } \\ \text { agree }}}{\text {. }}$

1. I can leam the math material without coming to class
_- 2. I can get a good grade in math even if I skip classes.

- 3. I can get a good grade in math even if sk kip the assigned homework.
_- 4. Getting a bad grade in math will not seriouly affect my futrue employment possibilitites.
- 5. Getting a bad grade in math will not seriouly affect my future financial well-being.
- 6. Getting a bad grade in math will not seriously affect the completion of my college degree.
_- 7. If miss math classes, I can always leam it on my oun from the textbook.
- 8. If m miss a math class, I am confident that I can make up the work.
_- 9. IfI miss math classes, I can always catch up later.
__ 10. IfI skip homework assigmments, I can always catch up later.

Scoring:
CLass devaluation (6 items) = \#1, \#2, \#3, \#7, \#8, \#9, \#10 Calculate the mean six-point rating for the seven items. \qquad
NO FUTURE VALUE (items) = \#4, \#5, \#6 Calculate the mean six-point rating for the three items

Math Confidence Scale
$\frac{\text { Instructions: Please use the six-point rating to report how much you agree or dibagree with each }}{\text { math belief descrbed }}$
$\begin{gathered}1=\text { strongly } \\ \text { disagree }\end{gathered} \quad 2=$ disagree $\quad 3=\begin{gathered}\text { somewhat } \\ \text { disagree }\end{gathered} \quad \begin{gathered}4=\text { somenhat } \\ \text { agree }\end{gathered} \quad 5=$ agree $6=$ strongly
agree

-1. 1 am confident that I can get a passing grade in math.

_- 2. I am confident that I can get $a \mathrm{~A}$ in math.
__ 3. Even if I do not understand a math problem at first, I am confident I will get it eventually.

- 4. Math seems easy for me and I am confident I will get a good grade in this math class. - 5. If I get a bad grade on a math test, I Inow I can do better next time with more practice.
\qquad I am confident I can practice math problems by myself until I understand them.

Scoring:

MATH CONFIDENCE (7 items) $=\# 1,42, \# 3, \# 4,45,46, \# 7$ Calculate the mean six-point rating for the six items

Survey Instrumentit

Math Barrier Scale

Instructions: Please use the six-point rating to report how much you agree or disagree with each
math belief described
$1=$ strongly $\quad 2=$ disagree
$3=$ somerthat
disagree
$4=$ somewh
agree nemhat $5=$ agree
$6=$ strongly
agree
_1. I have trouble remembering the steps in solving math problems.
_- 2. My parents have told me that I am bad at math
3. My teachers have told me that I am bad at math.
__ 4. My friends have told me that I am bad at math.

- 5. When Iam taling a math exam, I feel tense and have trouble breathing
_- 6. When I do math problems, I feel nervous.
-7. When I do math problems, Ifeel fustrated and angry
-8. When I do math problems, I feel stupid
- 9. When I get confised about something in math, I feel embarassed.
_10. When I am taling a math exam, I forget everything that I have practiced
__ ${ }^{11 .}$ I cannot concentrate on math for more than short periods of time.

Scoring:

MATH ANXIETY (8 items) $=\# 1,45$, \#6, \#7, \#8, 49, \#10, \#11
Calculate the mean five-point rating for the eight items.
DISCOURAGING WORDS (3 items) $=\# 2, \# 3$, \#4 Calculate the mean five-point rating for the three items.

Open ended question.

1. What advice would you give a student who is deciding what math course to take next semester?

DemographićQuestionnairere

```
Demographic Quetions
What is your hieh school grade point vernge,(an estimation is olo?
2. What mas the tighet math course you have taken?
3. What influenced your placement for this course (Circle one)?
assesment center coumselor friend intructor ouly y vallable coune self:gulded placemem
oher, pleasedercribe
Circle one of the three that bet decribes your major nad educational goal
Mu,
8. Wwly you,grat vour intructor permision to thare your grade withthe rearcher for the sole purpose of this
MES! plase, protide tee following: No, thank you.
    Student ID.
    Course
    Instructor:
9..Wil you grant the reearcher permisions to call you mith follow wp\mathrm{ puetions, if needed?}}\mathrm{ No, thenk you.
```



```
. Did either of your parenteg graduate from a A year college or uniersity)? Yes
6. Do you reeeve A Pell Grat, or ClliforiaiA Prombe Grant formerty BOGG? Yes No
7. Circle the gender that bet decribes you. Female Male Non-Binary Undeclured
8. What i your age -_
2. Circle the etmicity that best decribe you
```


Other_-_

References

Atkinson, J. W. (1957). Motivational determinants of risk-taking behavior. Psychological Review, 64(6), 359-372.
Bailey, T. \& Cho, S. W. (2010). Issue brief: Developmental education in community colleges. Community College Research Center.
Bandura, A., (1977). Self- efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191-215.
Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. New Jersey: Prentice-Hall Inc.
Bauman, K. (2017). School enrollment of the Hispanic population: Two decades of growth. United States Census Bureau, Census Blogs.
Calcagno, J. C. \& Long, B. T. (2008). The impact of postsecondary remediation using a regression discontinuity approach: Addressing endogenous sorting and noncompliance (NCPR Working Paper). New York, NY: National Center for Postsecondary Research.
California State University Early Assessment Program. (2016). College readiness for the CSU. [Brochure]. Fullerton: California State University.
Cates, G. L., \& Rhymer, K. N. (2003). Examining the relationship between mathematics anxiety and mathematics performance: An instructional hierarchy perspective. Journal of Behavioral Education, 12(1), 23-34.
Cerezo, A. \& McWhirter, B. (2012). A brief intervention designed to improve social awareness and skill to improve Latino college student retention. College Student Journal, 46(4), 867-879.
Chiu. (2017). California Assembly Bill 1468; An act to amend Section 78220 of the Education Code, relating to community colleges: student equity plans. Cuellar Mejia, M., Rodriguez, O., \& Johnson, H. (2016). Preparing students for success in California's community colleges. Public Policy Institute of California. Creswell, J. W. (2009). Research design: Qualitative, quantitative, and mixed methods approaches. Los Angeles, CA: Sage.
Engle, J. \& Tinto, V. (2008). Moving beyond access: College success for low-income, first generation students. Pell Institute for the Study of Opportunity in Higher Education. Fields, R. \& Parsad, B. (2012). Tests and cut scores used for student placement in postsecondary education: Fall 2011. Washington, DC: National Assessment Governing Board.

Firebaugh. (2001). California Assembly Bill 540: An act to add Section 68130.5 of the

References

Garcia, G. A. (2019). Becoming Hispanic-Serving Institutes: Opportunities for colleges \& universities. Baltimore: John Hopkins University Press.
Gordan, L. (2017). Panel endorses bill aimed at reducing number of college students in remedial classes. EdSource Highlighting Strategies for Student Success.
Hall, J. \& Ponton, M. (2005). Mathematics self-efficacy of college freshman. Journal of Developmental Education, 28(3).
Hendy, H. M., Schorschinsky, N., \& Wade, B. (2014). Measurement of math beliefs and their associations with math behaviors in college students. Psychological Assessment. Hern, K. (2012). Acceleration across California: Shorter pathways in developmental English and math. Changes. 44(3) 60-68.
Hern, K. \& Snell, M. (2014). The California Acceleration Project: Reforming developmental education to increase student completion of college-level; math and English. New Directions for Community Colleges, 2014(17), 27-39.
Hispanic Association of Colleges \& Universities. (2017). 2019 Fact Sheet Hispanic Higher Education and HSIs.
Hope, L. L. (2018). Assembly bill (AB) 705 implementation [Memorandum]. Academic Senate for California Community College.
Irwin. (2017). California Assembly Bill 705: An act to amend Section 78213 of the Education Code, relating to community colleges; Seymour-Campbell Student Success Act of 2012: matriculation: assessment.
Irwin. (2018a). California Assembly Bill 1805: An act to add Section 78221.5 to the Education Code, relating to community colleges: Student equity and achievement program. Irwin. (2018b). California Assembly Bill 1935: An act to amend Section 84757 of the Education Code, relating to community colleges: tutoring.
Jackson, J., Cook, K., \& Johnson, H. (2017). Higher education in California: Improving college completion. Public Policy Institute of California Higher Education Center.
Laden, B. V. (2004). Hispanic serving institutions: What are they? Where are they? Community College Journal of Research and Practice, 28, 181-198.
Lent, R. W., Lopez, F. G., \& Bieschke, K. J. (1991). Mathematics self-efficacy: Sources and relation to science-based career choice. Journal of Counseling Psychology, 38(4) 424-430.
Lent, R. W., Lopez, F. G., \& Bieschke, K. J. (1993). Predicting mathematics-related choice and success behavior: Test of an expanded social cognitive model. Journal of Counseling Psychology, 42 223-236.

