Moorpark College Parking Structure and Police Station
7075 Campus Rd., Moorpark, CA 93021
ELEVATOR ELEV. AT STAIR 1 ROOF LEVEL

PLAZA RAMP LOOKING WEST

PLAZA RAMP LOOKING EAST

RAILING AT STAIR #2

SCREEN BASE PLAN

SCREEN BASE

STAIR #2 WEST ELEVATION

STAIR SECTION

STAIR SECTION

SECTIONS

A4.05

Comments:
LEGEND

EXISTING ELECTRICAL CONDUIT
EXISTING COMMUNICATION LINE
EXISTING VACATION LINE
EXISTING SANITARY SEWER LINE
EXISTING DRAIN LINE
OVER-EXCAVATION TOP OF SLOPE
OVER-EXCAVATION BOTTOM OF SLOPE
MINIMUM EXCAVATION SLOPE FOR CALIFORNIA
MINIMUM EXCAVATION SLOPE FOR TENNIS COURTS
MINIMUM EXCAVATION SLOPE FOR COURT IMPROVEMENTS
EXCAVATION BOTTOM

GENERAL NOTES
1. LIMITS OF OVER-EXCAVATION DETERMINED USING THE FOLLOWING RESTRICTIONS:
 a. Geotechnical Study Parking Structure Moorpark College, Moorpark, California, Project No. 7275, February, 2014, Prepared by Geotechnical
2. EXCAVATION TO BE REMOVED FROM OVER-EXCAVATION AREAS DETERMINED IN CONSULTATION WITH MECHANICAL, ELECTRICAL, AND STRUCTURAL ENGINEERS.
3. BOTTOM OF OVER-EXCAVATION SHOWN 7' BELOW GRADE FOR ALL OTHER AREAS, EXCEPT WHERE DETERMINED BY CONTRACTOR.
4. BOTTOM OF OVER-EXCAVATION SHOWN 6' BELOW GRADE FOR EXISTING UTILITY TRENCHES.
5. BOTTOM OF OVER-EXCAVATION SHOWN 3' BELOW GRADE FOR EXISTING UTILITY TRENCHES.
6. EXISTING UTILITY TRENCHES SHALL BE PROTECTED IN PLACE FROM REMOVAL AND CUT-OFF, APPROVED BY CONTRACTOR OR ENGINEER OR ARCHITECT.
7. EXISTING UTILITY TRENCHES SHOWN FOR EXCAVATION ARE NOT SHOWN FOR DRAINAGE, REFER TO EXISTING DRAINAGE SHEETS TO AND CLUDB FOR EXISTING DRAINAGES TO BE REMOVED.

CALL BEFORE YOU DIG
8 1 1
(8 1 1)
DIAL TOLL FREE
8 1 1
(8 1 1)
CONSTRUCTION NOTES

1. CONSTRUCT 6" DIA. STORM DRAIN WITH RUBBER GASKET PER TRENCH DETAIL "A", SHEET C4.10.
2. CONSTRUCT 3" DIA. STORM DRAIN WITH RUBBER GASKET PER TRENCH DETAIL "A", SHEET C4.10.
3. CONSTRUCT 24" X 36" DRAINAGE PRECAST CONCRETE CATCH BASIN WITH NATURAL GRADES OR APPROVED EQUAL.
4. CONSTRUCT STORM DRAIN BASINS PER STORM PLAN C4.10.
5. REMOVE EXISTING CATCH BASIN AND REPLACE WITH 36" X 24" DRAINAGE PRECAST CONCRETE CATCH BASIN WITH NATURAL GRADES OR APPROVED EQUAL.
6. CONSTRUCT CURB OPENSIGN CATCH BASIN WITH VALVE PER STORM PLAN C4.10. B = 3.5'.
CONSTRUCTION NOTES:
2. Construct 3/4" CLAY BRICK PAVING COURSE CATCH BASIN W/ WHITE RIBBED GRADE OR APPROVED EQUAL.
3. Connect to existing STORM DRAIN MANHOLE.
4. Connect pipe from toll drain system to STORM DRAIN.
6. Construct 6" PVC SR 20 PERFORATED PIPE FLEXIBLE DRAIN, AT MINIMUM 0.62 SLOPE, IN 45\"x45\"x 3/4\" CUSHION DRAINS, WRAPPED WITH GEOTEXTILE, 6.0 MIL CONSTRUCTION DRAIN MATERIALS.
9. Construct 8" STEM SPACECAGE CEMENT CONCRETE, NO. 12.0 LOW PROFILE HANGING ADAPTER (NO. 12.0) OR APPROVED EQUAL.
10. Construct pipe connection to existing STORM DRAIN PER ORPINE PLAN C-4.2.
REINFORCING BARS

1. REBAR GRADES:
 ULTRAS PROCESSED REINFORCING STEEL GRADE A500B (A500B) IS THE ONLY GRADE USEFUL FOR CONCRETE STRUCTURAL CONSTRUCTION. DURABLE GRADE 60, 70, AND 80 REBAR ARE USUALLY USED IN ORTHOTROPIC DECKS AND OTHER SPECIFIC APPLICATIONS.

2. WELDED WIRE FABRIC:
 ULTRAS PROCESSED REINFORCING STEEL GRADE A500B (A500B) IS THE ONLY GRADE USEFUL FOR CONCRETE STRUCTURAL CONSTRUCTION. DURABLE GRADE 60, 70, AND 80 REBAR ARE USUALLY USED IN ORTHOTROPIC DECKS AND OTHER SPECIFIC APPLICATIONS.

3. DWELLING:
 ALL WALLS AND COLUMNS SHALL BE DOWELLED INTO FOOTINGS, WALLS, BEAMS, OR SLABS OF THE SAME SIZE AND SPACING AS THE WALLS ABOVE, IRRESPECTIVE OF THE SIZE OR SPACING OF THE WINDOWS ABOVE.

4. LAPS & SPACING:
 A. ALL SPANS FOR DOWELLED CONCRETE WIRING ARE TO BE NO LESS THAN 12 INCHES.
 B. ALL DOWELLED CORNER BARS SHALL BE AT LEAST 12 INCHES LONG.
 C. ALL SPANS FOR DOWELLED CONCRETE WIRING SHALL BE AT LEAST 12 INCHES LONG.

5. HOOPS & BENDS:
 HOOPS AND BENDS DETAIL DESIGNS SHALL CONFORM TO CURRENT CODE AND ACA 35, ISSUE 11, 11-03/2011.

6. INSTALLATION:
 HOOPS AND BENDS DETAIL DESIGNS SHALL CONFORM TO CURRENT CODE AND ACA 35, ISSUE 11, 11-03/2011.

7. CONCRETE PROTECTION OF REINFORCING BARS:
 A. THE AREA OF 3" SQUARE CONCRETE SURFACES OR EXPOSED TO DOWELLED CONCRETE SHALL BE PROTECTED WITH A 1/2" DEEP CONCRETE SURFACE WHERE EXPOSED TO THE CONCRETE OR BARE CONCRETE.
 B. CONSTRUCTION BARS, HOOPS, AND BENDS SHALL BE PROTECTED WITH A 1/2" DEEP CONCRETE SURFACE WHERE EXPOSED TO THE CONCRETE OR BARE CONCRETE.

8. PNEUMATICALLY-PLACED CONCRETE (SPRAY CONCRETE):
 A. ALL WORKMEN TO BE PROTECTED IN THE SAME QUALITY REQUIREMENTS AS THE CONTRACTOR.
 B. ALL WORKMEN TO BE PROTECTED IN THE SAME QUALITY REQUIREMENTS AS THE CONTRACTOR.

9. CONSTRUCTION JOINTS:
 A. ALL WORKMEN TO BE PROTECTED IN THE SAME QUALITY REQUIREMENTS AS THE CONTRACTOR.
 B. ALL WORKMEN TO BE PROTECTED IN THE SAME QUALITY REQUIREMENTS AS THE CONTRACTOR.

10. PIPES AND CONDUIT:
 A. ALL WORKMEN TO BE PROTECTED IN THE SAME QUALITY REQUIREMENTS AS THE CONTRACTOR.
 B. ALL WORKMEN TO BE PROTECTED IN THE SAME QUALITY REQUIREMENTS AS THE CONTRACTOR.

11. CONCRETE PLACEMENT & QUALITY:
 A. ALL WORKMEN TO BE PROTECTED IN THE SAME QUALITY REQUIREMENTS AS THE CONTRACTOR.
 B. ALL WORKMEN TO BE PROTECTED IN THE SAME QUALITY REQUIREMENTS AS THE CONTRACTOR.

12. CONCRETE PLACEMENT & QUALITY:
 A. ALL WORKMEN TO BE PROTECTED IN THE SAME QUALITY REQUIREMENTS AS THE CONTRACTOR.
 B. ALL WORKMEN TO BE PROTECTED IN THE SAME QUALITY REQUIREMENTS AS THE CONTRACTOR.

13. CONCRETE PLACEMENT & QUALITY:
 A. ALL WORKMEN TO BE PROTECTED IN THE SAME QUALITY REQUIREMENTS AS THE CONTRACTOR.
 B. ALL WORKMEN TO BE PROTECTED IN THE SAME QUALITY REQUIREMENTS AS THE CONTRACTOR.

14. CONCRETE PLACEMENT & QUALITY:
 A. ALL WORKMEN TO BE PROTECTED IN THE SAME QUALITY REQUIREMENTS AS THE CONTRACTOR.
 B. ALL WORKMEN TO BE PROTECTED IN THE SAME QUALITY REQUIREMENTS AS THE CONTRACTOR.

15. CONCRETE PLACEMENT & QUALITY:
 A. ALL WORKMEN TO BE PROTECTED IN THE SAME QUALITY REQUIREMENTS AS THE CONTRACTOR.
 B. ALL WORKMEN TO BE PROTECTED IN THE SAME QUALITY REQUIREMENTS AS THE CONTRACTOR.

16. CONCRETE PLACEMENT & QUALITY:
 A. ALL WORKMEN TO BE PROTECTED IN THE SAME QUALITY REQUIREMENTS AS THE CONTRACTOR.
 B. ALL WORKMEN TO BE PROTECTED IN THE SAME QUALITY REQUIREMENTS AS THE CONTRACTOR.

17. CONCRETE PLACEMENT & QUALITY:
 A. ALL WORKMEN TO BE PROTECTED IN THE SAME QUALITY REQUIREMENTS AS THE CONTRACTOR.
 B. ALL WORKMEN TO BE PROTECTED IN THE SAME QUALITY REQUIREMENTS AS THE CONTRACTOR.

18. CONCRETE PLACEMENT & QUALITY:
 A. ALL WORKMEN TO BE PROTECTED IN THE SAME QUALITY REQUIREMENTS AS THE CONTRACTOR.
 B. ALL WORKMEN TO BE PROTECTED IN THE SAME QUALITY REQUIREMENTS AS THE CONTRACTOR.

19. CONCRETE PLACEMENT & QUALITY:
 A. ALL WORKMEN TO BE PROTECTED IN THE SAME QUALITY REQUIREMENTS AS THE CONTRACTOR.
 B. ALL WORKMEN TO BE PROTECTED IN THE SAME QUALITY REQUIREMENTS AS THE CONTRACTOR.

20. CONCRETE PLACEMENT & QUALITY:
 A. ALL WORKMEN TO BE PROTECTED IN THE SAME QUALITY REQUIREMENTS AS THE CONTRACTOR.
 B. ALL WORKMEN TO BE PROTECTED IN THE SAME QUALITY REQUIREMENTS AS THE CONTRACTOR.

21. CONCRETE PLACEMENT & QUALITY:
 A. ALL WORKMEN TO BE PROTECTED IN THE SAME QUALITY REQUIREMENTS AS THE CONTRACTOR.
 B. ALL WORKMEN TO BE PROTECTED IN THE SAME QUALITY REQUIREMENTS AS THE CONTRACTOR.

22. CONCRETE PLACEMENT & QUALITY:
 A. ALL WORKMEN TO BE PROTECTED IN THE SAME QUALITY REQUIREMENTS AS THE CONTRACTOR.
 B. ALL WORKMEN TO BE PROTECTED IN THE SAME QUALITY REQUIREMENTS AS THE CONTRACTOR.

23. CONCRETE PLACEMENT & QUALITY:
 A. ALL WORKMEN TO BE PROTECTED IN THE SAME QUALITY REQUIREMENTS AS THE CONTRACTOR.
 B. ALL WORKMEN TO BE PROTECTED IN THE SAME QUALITY REQUIREMENTS AS THE CONTRACTOR.
ANCHOR ATTACHING AND ORBITING:
The length and diameter of all anchor rods shall be used for the design of anchor rods. All anchor rods, including those at intermediate stages, shall be designed for the maximum working load.

CALIBRATION:
The strain and stress at any location shall be determined by using strain gages at least 30 days before the installation. The results shall be used to determine the strain and stress at any location.

STRESSING SEQUENCE:
1. Uniform distribution of stresses shall be developed before the stressing operation begins. Stress shall be applied in the following sequence: (a) stressing sequence, (b) stressing sequence, (c) stressing sequence, (d) stressing sequence, (e) stressing sequence, and (f) stressing sequence.
2. Stressed tendons shall be subjected to the maximum working load for a period of 72 hours before stressing.
3. Stressed tendons shall be subjected to the maximum working load for a period of 72 hours before stressing.

STRESS LIMIT:
The maximum working load shall be less than 80% of the specified load.

FIELD FOREMAN:
The field foreman shall be responsible for ensuring that all stressing operations are in accordance with the stressing sequence. If any stressing operation is not in accordance with the stressing sequence, the field foreman shall immediately report the deviation to the engineer.

SOIL OBSERVATION:
The structural observation shall be performed at sites where the work plan for the observations is completed. The observations shall be made at each site where the stressing operation is completed. The observations shall be made at each site where the stressing operation is completed.

10. ANCHOR ATTACHING AND ORBITING
The stressing-end anchors and rods shall be marked with a bar, which shall be embedded in the concrete. The bar shall be marked with the anchor number, the stressing-end anchor number, and the stressing-end rod number.

a. The stressing-end anchors and rods shall be marked with a bar, which shall be embedded in the concrete. The bar shall be marked with the anchor number, the stressing-end anchor number, and the stressing-end rod number.

b. The stressing-end anchors and rods shall be marked with a bar, which shall be embedded in the concrete. The bar shall be marked with the anchor number, the stressing-end anchor number, and the stressing-end rod number.

c. The stressing-end anchors and rods shall be marked with a bar, which shall be embedded in the concrete. The bar shall be marked with the anchor number, the stressing-end anchor number, and the stressing-end rod number.

11. ANCHOR ATTACHING AND ORBITING
The stressing-end anchors and rods shall be marked with a bar, which shall be embedded in the concrete. The bar shall be marked with the anchor number, the stressing-end anchor number, and the stressing-end rod number.

a. The stressing-end anchors and rods shall be marked with a bar, which shall be embedded in the concrete. The bar shall be marked with the anchor number, the stressing-end anchor number, and the stressing-end rod number.

b. The stressing-end anchors and rods shall be marked with a bar, which shall be embedded in the concrete. The bar shall be marked with the anchor number, the stressing-end anchor number, and the stressing-end rod number.

c. The stressing-end anchors and rods shall be marked with a bar, which shall be embedded in the concrete. The bar shall be marked with the anchor number, the stressing-end anchor number, and the stressing-end rod number.
TABLE 1704A.3
REQUIRED VERIFICATION AND INSPECTION OF STEEL CONSTRUCTION

<table>
<thead>
<tr>
<th>VERIFICATION AND INSPECTION</th>
<th>CONTINUOUS</th>
<th>PERIODIC</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. MATERIAL VERIFICATION OF HIGH-STRENGTH BOLTS, NUTS AND ANCHERS:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Identification markings conform to ASTM standards specified in the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>appended construction documents.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Manufacturer's certificate of compliance required.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. INSPECTION OF HIGH-STRENGTH BOLTS:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Bearing-type connections.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Slip-critical connections.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. MATERIAL IDENTIFICATION OF STRUCTURAL STEEL:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Identification markings conform to ASTM standards specified in the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>appended construction documents.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Manufacturer's certificate of test reports.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. MATERIAL IDENTIFICATION OF WELDING MATERIALS:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Identification markings conform to ASME specifications in the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>appended construction documents.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Manufacturer's certificate of compliance required.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. INSPECTION OF WELDING:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Structural Steel:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) Complete and partial penetration Groove welds.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2) Multiple fillet welds.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3) Single-pass fillet welds > 3/8".</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4) Double-pass fillet welds ≤ 3/8".</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Roof and floor deck welds.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. INSPECTION OF STEEL FRAMES JOIN DETAILS FOR COMPLIANCE WITH APPENDED CONSTRUCTION DOCUMENTS:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Details such as bracing and stiffening.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Workmanship.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Application of joint details at each connection.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 1704A.4
REQUIRED VERIFICATION AND INSPECTION OF CONCRETE CONSTRUCTION

<table>
<thead>
<tr>
<th>VERIFICATION AND INSPECTION</th>
<th>CONTINUOUS</th>
<th>PERIODIC</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INSPECTION OF REINFORCED STEEL, INCLUDING PRESTRESSING TENDONS, AND PLACEMENT:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. INSPECTION OF REINFORCED STEEL WELDING IN ACCORDANCE WITH TABLE 1704A.4W:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. INSPECT BOLTS TO BE INSTALLED IN CONCRETE PRIOR TO AND DURING PLACEMENT OF CONCRETE:</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. VERIFICATION USE OF REQUIRED DESIGN MIX:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. AT THE TIME REBAR CONCRETE IS SAMPLED TO FACILITATE SPECIMENS FOR STRENGTH REQUIREMENTS AND ANY OTHER TESTS, AND DETERMINE THE TEMPERATURE OF THE CONCRETE:</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. INSPECTION OF CONCRETE AND SHORING PLACEMENT FOR PROPER APPLICATION TECHNIQUES:</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. INSPECTION OF MAINTENANCE OF SPECIMENS UNDER TEMPERATURE AND TECHNIQUES:</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. INSPECTION OF PRESTRESSED CONCRETE:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Identification of prestressing tendons.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Checking of forces prestressing tendons in the design-force-resisting system.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. ERECTION OF PRECAST CONCRETE MEMBERS:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. INSPECTION OF ALL-LEVEL CONCRETE STRENGTHS PRIOR TO STRENGTH TESTS IN PRECASTED CONCRETE, AND PRIOR TO TERMINAL OF SHORING AND FORMING FROM MOLDING TO STRUCTURAL COMPLETION</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. INSPECT FORMWORK FOR SHAPES, LOCATION AND DIMENSIONS OF THE CONCRETE MEMBER BEFORE TELING.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. POST-INSTALLED ANCHORS</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I. INSPECTION

1. **TESTS & INSPECTIONS:**
 - A. ALL CONCRETE, AGGREGATES, REINFORCING STEEL, STRUCTURAL STEEL, ETC. SHALL, EXCEPT FROM TESTED STOCK, COPIES OF TEST REPORTS SHALL BE ATTACHED TO THE RECORDS AND THE HSA.
 - B. SEE SPECIFICATIONS FOR ADDITIONAL TESTS AND/OR INSPECTION REQUIREMENTS.

2. **FIELD INSPECTION:**
 - ALL FIELD INSPECTIONS SHALL BE FOR CLASSES I AND D, EXCEPT A MINIMUM OF THREE-YEAR EXPERIENCE IN THE SPECIFIC CONSTRUCTION BEING INSPECTED.

3. **INSPECTION IS REQUIRED DURING THE FOLLOWING:**
 - A. CONCRETE:
 1. During the mixing of test specimens and placing of all reinforced concrete.
 2. During the placement of all reinforced concrete and precast concrete in the field.
 - B. STRUCTURAL STEEL:
 1. During the placing of reinforcing steel, tendons and prestressing steel, for all post-tensioned concrete, tension placement and erection of the precast concrete.
 2. During the placement of reinforcing steel, tension placement and erection of the precast concrete.
 3. During the placement of reinforcing steel.
 - C. WELDING:
 1. During all structural welding, including welding of reinforcing steel, structural steel, and metal decking.
 2. STRUCTURAL BOLTING:
 3. During the installation of all bolts, which require inspection as a part of the final test report, and all special foundations if used, have been satisfied as required by the engineer or the inspector.

4. **MATERIAL TESTS:**
 - A. GENERAL:
 1. Carefully inspect all materials:
 2. All materials:
 - B. CONCRETE:
 1. Inspect mortars for conformity to ASTM standards.
 2. Mixture and cement:
 3. Cement:
 4. CLAB, tests a, b and c:
 - C. CONCRETE:
 1. Prior tests for 5% exceeding 1900 psi and as required by Method of Determining f’:
 2. Insurer limits:
 3. Compact:
 4. Moisture:
 - D. ALL BOLTS:
 1. All steel bolts should be tested to tensile strength.
 2. Tension tests, bending strength and elongation at rupture, shall be properly certified by the fabricator.

5. **INFORMATION, INSPECTIONS, AND INSPECTIONS OF MATERIALS:**
 - A.walden:
 - B. Information, inspections, and inspections of materials:
 - C. Chemical analysis and material requirements:
 - D. Chemical analysis of asphalt:

 *Special inspections identified above are in addition to those inspections required by the building code. Special inspection is not a substitute for inspection by the HSAs of Record.***

ABT.

ANCHOR BOLT TESTING

<table>
<thead>
<tr>
<th>Test Values</th>
<th>Anchor Dia.</th>
<th>M. L.</th>
<th>T. L.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>1000</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>3/4</td>
<td>1500</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>4/5</td>
<td>2000</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

1. **APPLICATION OF BOLTS:**
 - **APPLICATION OF BOLTS:**

2. **THE FOLLOWING CRITERIA APPLY:**
 - **THE FOLLOWING CRITERIA APPLY:**

 APPLICATION OF BOLTS:

3. **TESTING SHOULD BE PERFORMED:**
 - **TESTING SHOULD BE PERFORMED:**

 APPLICATION OF BOLTS:

4. **ALL RECORDS SHOULD BE KEPT FOR THE FOLLOWING:**
 - **ALL RECORDS SHOULD BE KEPT FOR THE FOLLOWING:**
 - **ALL RECORDS SHOULD BE KEPT FOR THE FOLLOWING:**
 - **ALL RECORDS SHOULD BE KEPT FOR THE FOLLOWING:**
 - **ALL RECORDS SHOULD BE KEPT FOR THE FOLLOWING:**

 APPLICATION OF BOLTS:

GENERAL STRUCTURAL NOTES:

NOTE:

Sheet No.: S1.04
TABLE 1704A.5.3
LEVEL 2 REQUIRED VERIFICATION AND INSPECTION OF MASONRY CONSTRUCTION

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>ICC</th>
<th>LARR</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. COUPLERS - TYPE 2 ONLY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. ERICO LENOX</td>
<td>ER-3807</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>b. Precision New England</td>
<td>ER-2794</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2. TERMINATORS - TYPE 2 ONLY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. ERICO LENOX</td>
<td>ER-3807</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>b. F&H T-HEAD</td>
<td>ER-6292</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3. EPOXY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. HILTI HT-1830 MAX (MASONRY)</td>
<td>ESR-19067</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>b. HILTI HT-1830 MAX-53 (CONCRETE)</td>
<td>ESR-3013</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>c. Simpson GCT</td>
<td>ESR-1772</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4. EXPANSION ANCHORS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. HILTI H85 (MASONRY) OR H85-12 (CONCRETE)</td>
<td>ESR-1385 / 1917</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>b. Simpson Strong-Bolt</td>
<td>ESR-1771</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5. LOW-ALLOY STEEL DRIVEN FASTENERS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. 4,000 psi: HILTI E-M</td>
<td>ESR-1563</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>b. 4,400 psi: HILTI E-M+</td>
<td>ESR-1563</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>6. LIGHT GAUGE METAL FRAME</td>
<td>ER-4943P</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>7. METAL SHEETS</td>
<td>ER-4780</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>8. CONCRETE REBAR</td>
<td>RR 23963</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>9. METAL DECKS</td>
<td>ESR-1736P</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>10. WOOD CONSTRUCTION CONNECTORS</td>
<td>ESR-2823</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>11. BRICK ANCHORS</td>
<td>RR 2212B / 24160</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>12. WELD STUDS</td>
<td>ESR-2856</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Contractor may propose alternate products to those listed above. In such cases contractor is to supply the relevant ICC/LARR report and demonstrate equality of proposed alternate to the satisfaction of the Engineer of Records and the Governing Jurisdiction.

TABLE 1704A.7
REQUIRED VERIFICATION AND INSPECTION OF SOIL

<table>
<thead>
<tr>
<th>VERIFICATION AND INSPECTION TASK</th>
<th>CONTINUOUS</th>
<th>PERIODIC</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. VERIFY MATERIALS BELOW FOOTINGS ARE ADEQUATE TO ACHIEVE THE DESIGN BEARING CAPACITY.</td>
<td>X</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2. VERIFY EXCAVATIONS ARE EXTENDED TO PROPER DEPTH AND HAVE REACHED PROPER MATERIAL.</td>
<td>X</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3. PERFORM CLASSIFICATION AND TESTING OF CONTROLLED FILL MATERIALS.</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4. VERIFY USE OF PROPER MATERIALS AND TOWERS DURING PLACEMENT AND COMPACTION OF CONTROLLED FILL.</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5. PRIOR TO PLACEMENT OF CONTROLLED FILL, OBSERVE SUBGRADE AND VERIFY THAT SITE HAS BEEN PREPARED PROPERLY.</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
3. CORROSION PREVENTIVE COATING:

A. CORROSION PREVENTIVE PAINTING MARY, WHEN PAINTED, SHALL BE LATEX (SITEL), CONTAINING CORROSION PREVENTIVE, BRIGHT WHITE, LESS THAN 50 PARTS PER MILLION OF CHELATES, CHLORIDES OR SULFATES ON DRY MATERIALS AND BE APPLIED IN THE FOLLOWING PROPORTIONS:

- CORROSION PROTECTION FOR THE SURFACE OF THE CONCRETE AND CONCRETE:
 -WALL LEAKS OR STAINS OR THE EXPOSURE OF EXISTING CONCRETE AND CONCRETE
 - before applying the waterproofing coating, wash with a mild detergent and rinse with clean water.
 - Allow the surface to dry before applying the coating.

B. PROTECTIVE FILM SHALL BE A WET ORANE COATING WITH A PROPER MIXTURE FOR APPROPRIATE MOISTURE DISPLACEMENT AND CORROSION PREVENTIVE ASSISTANT.

C. MINIMUM WEIGHT OF COATING MATERIAL SHALL BE NOT LESS THAN 1.5 Pounds per square foot (7.5 Kg/m²) to ensure the quality of the coating material used for the protection of the concrete surface. The coating material shall be in accordance with the specification provided by the manufacturer.

D. CORROSION PROTECTIVE COATING MATERIAL SHALL BE COMPLIANCE WITH PERFORMANCE REQUIREMENTS IN THE CONTRACT SPECIFICATION MANUAL.

1. INSPECTION OF PRE-STRESSED CONCRETE PER 17434.4-6:

In addition to the general inspection required for concrete work, all post-tensioned concrete structures shall be subject to further inspection by the Inspector. In addition to the presence of the Inspector, such inspection shall be governed by the following:

- The Inspector shall be informed of the location of the pre-stressed concrete structure and shall be provided with a written report detailing the inspection requirements.
- The Inspector shall verify that the pre-stressed concrete structure is in accordance with the plans and specifications.
- The Inspector shall verify the installation of the pre-stressed concrete structure and the post-tensioning system.
- The Inspector shall verify that the post-tensioning system is in accordance with the plans and specifications.

The Inspector shall have the authority to halt the construction proceedings if any violation is observed. The Inspector shall issue a written report detailing the findings and recommendations for corrective action.

2. TESTS FOR PRESTRESSED STEEL AND ANCHORAGE:

All tests of the materials and components shall be conducted in accordance with the applicable standards and specifications. The tests shall be conducted as follows:

A. For wire, strand(s) or strand, T-TEST SAMPLES SHALL BE TAKEN OF THE CONCRETE STRUCTURE TO BE INSPECTED.

B. For prestressed tendons, tendons of the same type and size shall be subjected to the same test.

C. The tests shall be conducted in accordance with the applicable standards and specifications.

D. The tests shall be conducted at least 24 hours after the installation of the prestressed concrete structure.

3. SHEATHINGS:

A. THE SHEATHING SHALL BE MADE OF MATERIAL WITH THE FOLLOWING PROPERTIES:

1. DURABILITY: THE SHEATHING SHALL WITHSTAND UNREASONABLE DAMAGE DURING FABRICATION, STORAGE, INSTALLATION, CONCRETE CASTING AND TENSIONING.

2. STIFFNESS: THE SHEATHING SHALL BE STIFF ENOUGH TO WITHSTAND THE CONCRETE PLACEMENT AND TENSIONING PROCESSES.

3. CHEMICAL STABILITY: THE SHEATHING SHALL WITHSTAND THE CORROSION PREVENTIVE AND POST-TENSIONING SYSTEMS.

B. MINIMUM THICKNESS OF THE SHEATHING SHALL NOT BE LESS THAN 1/4 INCH (6.35 MM).

C. SHEATHING SHALL BE IMPERMEABLE TO WATER AND IMPERMEABLE TO CORROSION.

D. SHEATHING SHALL BE CONTINUOUS AND WATERPROOF BETWEEN WIRE FACES, ANY AREA OF EXPOSED STEEL, SHEATHING SHALL BE COVERED WITH A WEATHER RESISTANT COATING.

SPT SPECIAL POST TENSIONING NOTES (continued)
FOOTING SCHEDULE

<table>
<thead>
<tr>
<th>MARK</th>
<th>S</th>
<th>L</th>
<th>T</th>
<th>REINFORCING</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>12'-0"</td>
<td>12'-0"</td>
<td>2'-0"</td>
<td>12# 6EW</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>14'-0"</td>
<td>14'-0"</td>
<td>2'-0"</td>
<td>14# 6EW</td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>6'-0"</td>
<td>6'-0"</td>
<td>2'-0"</td>
<td>8# 6EW</td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>2'-0"</td>
<td>2'-0"</td>
<td>3'-0"</td>
<td>4# 6EW</td>
<td>3'-0 DEEP AT ADJ</td>
</tr>
</tbody>
</table>

FOUNDATION PLAN

NOTE: FOUNDATION LEVEL IS BASE LEVEL FOR DESIGN.
THIRD LEVEL FRAMING PLAN
NOTES:
1) OK TO PROVIDE CONCRETE TENDONS PER ICC ER-1967 OR HRC 355. HEAVY DUTY BARS PER HRC ESR-2935 IN LIES OF STANDARD HOOKS.
2) TERMINATE SKIN/FACE BARS W/ STD. HOOKS OR PER (1) ABOVE IN BEAM/COL. JOINT AS PER TYPICAL BARS.
3) WHERE TENDON HOOKS IN BEAM SUSPENDED.PHONIC HOOK AS DEPICTED ON TYPICAL DRAWINGS ABOVE.
GROUND LEVEL PLUMBING PLAN

Sheet No. P3.0
TAILORED METHOD WORKSHEET

<table>
<thead>
<tr>
<th>Date:</th>
<th>August 2009</th>
</tr>
</thead>
</table>

LINE VOLTAGE TRACK LIGHTING WORKSHEET

<table>
<thead>
<tr>
<th>Date:</th>
<th>August 2009</th>
</tr>
</thead>
</table>

INSTALLATION CERTIFICATE

<table>
<thead>
<tr>
<th>Date:</th>
<th>August 2009</th>
</tr>
</thead>
</table>
THIRD LEVEL (ROOF) LIGHTING PLAN

SCALE: 1/16"=1'-0"

EXPANDED VIEW LOOKING NORTH

E3.04
SECOND LEVEL POWER & COMMUNICATION PLAN

SCALE: 1/16"=1'-0"

KEY NOTES:

1. Verify location of all services on architectural plans.
2. Punch list to be completed by owner.
3. Be sure all lighting fixtures are installed.
4. Be sure all mechanical equipment is installed.
5. Be sure all plumbing fixtures are installed.
6. Be sure all electrical systems are installed.
7. Be sure all electrical panels are installed.
8. Be sure all electrical conduit is in place.
9. Be sure all electrical circuitry is installed.
10. Be sure all electrical switches are installed.
11. Be sure all electrical receptacles are installed.
12. Be sure all electrical panelboards are installed.
13. Be sure all electrical panelboards are tested.
14. Be sure all electrical panelboards are labeled.
15. Be sure all electrical panelboards are marked.
16. Be sure all electrical panelboards are connected.
17. Be sure all electrical panelboards are grounded.
18. Be sure all electrical panelboards are bonded.
19. Be sure all electrical panelboards are protected.
20. Be sure all electrical panelboards are tested.
21. Be sure all electrical panelboards are labeled.
22. Be sure all electrical panelboards are marked.
23. Be sure all electrical panelboards are connected.
24. Be sure all electrical panelboards are grounded.
25. Be sure all electrical panelboards are bonded.
26. Be sure all electrical panelboards are protected.
27. Be sure all electrical panelboards are tested.
28. Be sure all electrical panelboards are labeled.
29. Be sure all electrical panelboards are marked.
30. Be sure all electrical panelboards are connected.
31. Be sure all electrical panelboards are grounded.
32. Be sure all electrical panelboards are bonded.
33. Be sure all electrical panelboards are protected.
34. Be sure all electrical panelboards are tested.
35. Be sure all electrical panelboards are labeled.
36. Be sure all electrical panelboards are marked.
37. Be sure all electrical panelboards are connected.
38. Be sure all electrical panelboards are grounded.
39. Be sure all electrical panelboards are bonded.
40. Be sure all electrical panelboards are protected.
41. Be sure all electrical panelboards are tested.
42. Be sure all electrical panelboards are labeled.
43. Be sure all electrical panelboards are marked.
44. Be sure all electrical panelboards are connected.
45. Be sure all electrical panelboards are grounded.
46. Be sure all electrical panelboards are bonded.
47. Be sure all electrical panelboards are protected.
48. Be sure all electrical panelboards are tested.
49. Be sure all electrical panelboards are labeled.
50. Be sure all electrical panelboards are marked.
51. Be sure all electrical panelboards are connected.
52. Be sure all electrical panelboards are grounded.
53. Be sure all electrical panelboards are bonded.
54. Be sure all electrical panelboards are protected.
55. Be sure all electrical panelboards are tested.
B1 LEVEL FIRE ALARM PLAN

EXPANDED VIEW LOOKING NORTH

SCALE: 1/72" = 1'-0"
FIRE ALARM PLAN RISER DIAGRAM
SCALE: NONE
PARKING STRUCTURE
Concrete Mowscub

Shrub Planting With Mulch

Tree Planting and Staking

Linear Root Barrier

Plant Spacing

MOORPARK COLLEGE PARKING STRUCTURE
Moorpark, California

EPT DESIGN
Incorporated

Scale: 1"=1'-0"