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WHAT IS A PROOF? 

 
 What is a proof and why do we care?  Previously in your mathematical life you have 
mostly focused on computation.  You were not concerned with whether or not things were true 
but with whether you got the “right” answer.  It is not uncommon for students to say, “I know 
the answer.  Why do I need to understand the steps?” There are a number of responses to this.  
How do you know your answer is correct?  How can you convince someone else your answer is 
correct?  If you are given a harder problem to which you don’t know the answer, how are you 
going to approach it?  Proof addresses these concerns. 

 A proof is a sequence of statements justified by axioms, theorems, definitions, and 
logical deductions, which lead to a conclusion.  Your first introduction to proof was probably in 
geometry, where proofs were done in two column form.  This forced you to make a series of 
statements, justifying each as it was made.  This is a bit clunky.  We want to have the same 
content, but without noting every trivial detail.  A proof should read naturally.  How much 
detail should we give?  it depends on the mathematical background of the writer and the 
reader.  A professional mathematician will need fewer details to understand the argument than 
will a beginning student.  in both cases, though, the proof should be as clear and concise as 
possible.  

 The process of writing a proof forces us to clearly understand the ideas involved.  In 
formulating our thoughts in such a way as to explain the ideas to others, we clarify the ideas to 
ourselves.  This is akin to what happens when we teach someone else.  This process shows us 
where we have gaps in our understanding.  This helps us to see the structure behind what 
we’re trying to show.  Mathematics is very much about structure.  When we see a new 
statement, when we’re given a new problem, when we try to write a new proof, we try to see 
how everything fits into this structure.  What do the words mean?  What kinds of objects are 
we talking about?  What do we know about such kinds of objects?  How do they relate? 

 Developing the ability to write good proofs takes time and practice.  Here’s an example 
from an actual assignment of how wrong it can go. 

Exercise: If u, v, and w are vectors such that u + v + w = 0, prove that span{u,v} = span{v,w} 

Here was the student’s argument: 

  The only way this would not be true is if (u,v) and (v,w) spanned different things.  
Since u + v = -w, there can be no dimension Wn in W that does not have a corresponding 
component in either -Un or -Vn or some combination of the two that can span the same 
dimension the same way. 



 There are a number of things wrong with this.  The use of the word dimension is 
nonsensical.  What does n refer to?  What does Wn mean?  What is a corresponding 
component?  What is -Un or -Vn or some combination of the two?  What does the phrase “span 
the same dimension the same way” mean?  Virtually nothing in this statement is 
understandable. Does the student at least have the right idea behind the argument?  I don’t 
know, but this is a long way from clearly showing the reader why the statement is true. 

 This guide is not a textbook.  It will contain some definitions and some theorems, but it 
focuses on how to think about linear algebra and how to put these thoughts into clear 
statements.  No book, no teacher, no class can magically give you abilities.  Skills are earned 
through practice and hard work.  The assisted proofs in this guide will help you develop your 
skills, but it is imperative that you write many proofs and rewrite those proofs and rewrite 
those proofs. Read proofs.  Share proofs.  Discuss them.  Argue them.  Don’t be afraid to be 
wrong.  Be open to criticism.  Critique yourself.  If your peers don’t understand your arguments, 
figure out why.  If you don’t understand your peers’ arguments, figure out why. 

 The theme, which I will restate time and again, is that writing a strong proof is a matter 
of clear thought and hard work. From the beginning, invest time and energy in understanding 
the ideas and learning to express them well. There is no substitute for hard work. 

 Above, we noted that a proof is a sequence of statements justified by axioms, theorems, 
definitions, and logical deductions, which lead to a conclusion.  Let’s look at these. 



AXIOMS, DEFINITIONS, and THEOREMS 

 

 Axioms are the statements in mathematics which we accept without proof. Every proof 
ultimately falls back to these beginning statements. There are very interesting questions about 
which statements we should start with in mathematics and what the consequences of so doing 
are. Mathematicians in the late 19th and early 20th centuries expended a great deal of thought 
and effort into this. Looking back to these statements, deciding how to choose them, and 
studying the consequences of doing so is beyond the scope of the linear algebra course, but you 
are encouraged to look into the subject.  

 Mathematics is the structure which results from the consequences of our axioms. Our 
job is to understand parts of this structure. To grapple with mathematics, we have to be able to 
refer to pieces of it and ask how it all fits together. Definitions focus our questions on certain 
objects or sets or relationships in mathematics. In general, the broader a definition, the more 
parts of mathematics it applies to, and the less sharp the theorems about it can be. The more 
restrictive a definition, the fewer parts of mathematics it applies to, and the sharper the 
theorems can be. Possibly the most important aspect of writing proofs is to understand the 
definitions of the words we are using. Often in beginning linear algebra, writing out the 
definitions involved in our statement is half the battle. When we talk about vector spaces, 
dimensions, bases, and so on, we have to be absolutely clear about what we are referring to. 

 Theorems are the statements in mathematics which we know to be true. Typically, we 
reserve the word for statements which are not immediately obvious, but there’s no hard and 
fast rule for this. In proving theorems we often try to break our arguments up into digestible 
pieces so that the organization of the proof is clear. A lemma is a subtheorem that we prove 
separately so that it can be used in our proof without breaking the flow of the argument. This is 
akin to developing a subroutine in programming.  



SOME BASIC LOGIC 

 
 Logical deduction was the fourth element in our list of ingredients for writing proofs. 
Much of our logical structure is buried in the development of axiomatic structure and set 
theory. From this we get the theorems we’ve previously developed in mathematics such as 
Euclidean geometry, algebra, trigonometry, and calculus. We are fortunate to have this 
structure to work from, so that we already have a solid box of tools when we start studying 
linear algebra. We do need some more discussion of the basics of logic, though. We’ll look at 
some symbolic logic now. 

Let’s start with the following symbols: P ⇒ Q. Here P stands for a given statement, ⇒ 
means “implies”, and Q stands for a conclusion statement.  

For example, if P is the statement, “It is raining”, and Q is the statement, “Water is 
falling on the ground”, then P ⇒ Q says, “It is raining implies water is falling on the ground”. 
Another way that we say this is, “If it is raining, then water is falling on the ground.” This is 
called the if-then form of the statement. This is a logical statement that we would deem to be 
true, in general.  

Another example, if P is the statement, “You didn’t answer your phone”, and Q is the 
statement, “You are cheating on me”, then P ⇒ Q says, “You didn’t answer your phone, so you 
are cheating on me”. This is a logical statement that may or may not be true. 

Another example, if P is the statement, “The sky is blue”, and Q is the statement, “Pigs 
can fly”, then P ⇒ Q says, “If the sky is blue, then pigs can fly”. This is a logical statement which 
is not true. 

It is clear from the preceding examples that if we want to know if Q is true, then we 
need to know that P is true and that the implication is valid. When writing proofs, we must 
check these two things. We must start with statements we know to be true and show the 
implication is forced, so that Q must be true. 

If P ⇒ Q, we say that P is SUFFICIENT for Q to be true and we say that Q is NECESSARY 
for P to be true. 

 

THE CONVERSE 

 The converse of P ⇒ Q is P ⇐ Q (equivalently, Q ⇒ P). In general, we don’t expect the 
converse to be true. For example, “If it is raining, then water is falling on the ground” seems 
reasonable, but “If water is falling on the ground, then it is raining” seems less reasonable to 



those who own sprinklers. As for a math example, “x = 3, so x2 = 9” cannot  be reversed to        
“x2 = 9, so x = 3”. 

 

THE DOUBLE IMPLICATION 

 Sometimes the implication does work both ways. If P ⇒ Q and Q ⇒ P, then we write       
P ⇔ Q and we say that P is true if and only if Q is true. An example from mathematics is “x = 3 if 
and only if x + 2 = 5”. To prove a double implication, we often have to show each of the 
implications separately. 

 

THE NEGATION 

 The negation of the statement P, not P, is written ~P and it means the opposite of P. For 
example, if P is “x = 3”, then ~P is “x ≠ 3”. 

 

THE CONTRAPOSITIVE 

 If P ⇒ Q, then the contrapositive is  ~Q ⇒ ~P. These are considered logically equivalent. 
For example, “x = 3” implies “x2 = 9” has as the contrapositive “x2 ≠ 9” implies “x ≠ 3”. In proofs 
this shows up as the technique Proof by Contradiction. If one needs to show P ⇒ Q, then it 
suffices to show ~Q ⇒ ~P.  This technique will be examined in its own section. 

  

EXAMPLE 

 This example is from Lewis Carroll: 

 

 Babies are illogical. 

Nobody is despised who can manage a crocodile. 

Illogical persons are despised. 

 

 We can write this symbolically by doing the following:  

Define  P = { a person is a baby }, 

 Q = { a person is illogical }, 



 S = { a person is despised }, and  

 T = { a person can manage a crocodile }. 

 

 The statements then become P ⇒ Q, T ⇒ ~S, and Q ⇒ S. The contrapositive of the 
second statement is S ⇒ ~T. Stringing these together gives us P ⇒ Q ⇒ S ⇒ ~T, which gives us 
P ⇒ ~T.  Our conclusion, then, is the statement, “Babies cannot manage crocodiles”. This 
process of stringing together logical statements is called SYLLOGISM. 

 Another type of syllogism involves inclusions or conditions. These can often be aided by 
Venn diagrams. Consider the following example: 

 If some decisions are careful reflections and all uses of free will are decisions, do we 
know that some uses of free will are careful reflections? 

 Let’s set A as the set of decisions, B the set of careful reflections, and C the set of uses of 
free will. The Venn diagram for “some decisions are careful reflections” is  

 

 “All uses of free will are decisions” means that we put a circle for C inside of A. Does 
that circle have to intersect B? No, it can be drawn in the left hand side of A, so we don’t know 
that some uses of free will are careful reflections. They may be, but it is not a logical 
consequence of the given statements. 

 

EXERCISES 

 



 Now try to determine whether the following statements follow logically from the given 
statements. 

 

 

Statement 1: If Dilbert is to finish the project, he will have to move out of his cubicle.  But Dilbert will 
get to move out of his cubicle only if he strokes Catbert.  So for Dilbert to finish the project, he is going 
to have to stroke Catbert. 

Statement 2: Some directors of human resources are cats, and some cats purr when stroked.  So some 
directors of human resources purr when stroked. 

Statement 3:  All men are mortal. Socrates is a man. Therefore, Socrates is mortal. 
 

Statement 4:  All barbiturates are drugs. Marijuana is not a barbiturate. So marijuana is not a 
drug. 

Statement 5:  No free choices are caused occurrences. Some natural processes are not caused 
occurrences. So some natural processes are not free choices. 
 

 Now try a couple of questions. 

Question 1:  from The Merchant of Venice: 

Portia was a woman desired by many men. It was arranged she would marry the man who could 
correctly guess which of three caskets contained her portrait. One casket was inscribed with, 
"Who chooseth me shall gain what many men desire." One man concluded that, since many men 
desired Portia, her portrait must be in that casket. Was this logically sound? 

Question 2:  What is the conclusion to the following statement?  

Anyone who speaks in tongues does not speak to men but to God. But everyone who 
prophesies speaks to men for their strengthening, encouragement, and comfort.  (Paul, I Corinthians, 
14:2-3) 

 

 
 

Putting together the definitions and theorems with logical connectors to prove our 
statements is called DEDUCTIVE REASONING. Let’s look at a technique which is a good place to 
start in our understanding, but which is NOT proof: INDUCTIVE REASONING. 



INDUCTIVE REASONING 

 

 When trying to understand a new concept or when trying to decide whether or not a 
statement is true, it is generally helpful to look at examples.  Understanding how something 
works for specific examples often leads to how something works in general.  Coming up with 
good examples is a vital skill in learning mathematics and in developing proofs.  Looking at a 
number of examples, coming up with a statement that is true about those examples, and then 
proposing that the statement is true more generally is called INDUCTIVE REASONING.  We use 
this a great deal and to great benefit in our everyday life.  If my girlfriend has gotten mad every 
time I’ve talked with my mouth full, then she’s probably going to get mad the next time I do it.  
If the sun has come up every morning, it’s probably going to come up tomorrow morning.  In 
mathematics, however, inductive reasoning never constitutes proof unless we can look at every 
single possible example.  Inductive reasoning is good for setting up hypotheses.  It’s good for 
looking for ideas.  But it’s not good for proof.   

An extreme example of this is a common error when students first start writing proofs.  
Asked to prove something in general, the student will often give a single example and be done.  
This would be like saying, “my mom’s name is Susan so all moms are named Susan.” Or when 
asked a question about matrices in general, the student will randomly assume that the matrix is 
2X2.  This is not adequate for proof and inductive reasoning does not always lead to correct 
statements. 

In the 17th  century, the mathematician Fermat realized that for a number of the form  
2k + 1 to be a prime, k would have to have the form 2n.  So he started looking at numbers of the 
form 22𝑛𝑛 + 1.  These are called Fermat numbers. For n = 0, 1, 2, 3, 4, the Fermat numbers are 3, 
5, 17, 257, and 65537.  These Fermat numbers are prime.  But their size grows very fast and for 
n = 5, the Fermat number is already 4294967297.  This number was too big for Fermat to 
determine whether it was prime are not and the numbers after that were way, way too big.  
But, reasoning inductively from a small sample, he hypothesized that all Fermat numbers are 
prime.  This was wildly wrong.  Not a single other Fermat number studied has proven to be 
prime and mathematicians now strongly suspect that the number of Fermat numbers which are 
prime is finite.  

Even a very large number of examples can lead us astray.  There are functions in number 
theory called 𝜋𝜋(𝑥𝑥) and 𝑙𝑙𝑙𝑙(𝑥𝑥).  In the early 20th century all evidence pointed to 𝑙𝑙𝑙𝑙(𝑥𝑥) being 
bigger than  𝜋𝜋(𝑥𝑥).  It’s true for 𝑥𝑥 up to some enormously large number, a number so big that 

we’re only confident that it is smaller than something like 101010
34

.  But it turns out that which 
one is bigger, 𝜋𝜋(𝑥𝑥) or 𝑙𝑙𝑙𝑙(𝑥𝑥), switches back and forth an infinite number of times. 



The point is that you cannot prove statements by example unless you show every 
possible example is true.  If you want to show something is true about symmetric matrices, it is 
not possible to list out every symmetric matrix.  If you want to show that the composition of 
linear transformations is a linear transformation, it is not possible to list out every linear 
transformation.  If you want to show that a property is independent from a change of basis, it is 
not possible to consider every change of basis individually. 



HOW TO APPROACH A PROOF 

 

 The approach to writing a proof is much like the approach to solving word problems.  
The first thing is to read through the problem and make sure you understand exactly what the 
problem is asking.  What do the words mean?  What information is given?  What do you know 
about the topic under discussion?  Are there any diagrams or pictures that will help you?  
Throughout this guide, whenever a proof is being discussed, you’ll be asked leading questions.  
Pay attention to the questions.  These are the questions you should be asking yourself.  
Learning to ask yourself appropriate questions is a very important skill in learning to write 
proofs.  Write down your questions.  Write down the definitions of the terms involved.  Write in 
complete sentences.  Make sure these sentences are meaningful.  Make sure the statements 
are correct.   

 The mathematician, George Polya, developed the following four-step approach to 
problem solving: 

 Step 1: Understand the Problem 

 Step 2: Devise a Plan 

 Step 3: Carry Out the Plan 

 Step 4: Look Back 

 This is simplistic, but it does give a place to start. He also suggested the following 
heuristics for when you are struggling with a problem or proof: 

 Analogy: Can you find a problem analogous to your problem and solve that? 

 Generalization:  Can you find a problem more general than your problem? 

 Induction:  Can you solve your problem by deriving a generalization from some 
examples? 

 Variation:  Can you vary or change your problem to create a new problem (or set of 
problems) whose solution(s) will help you solve your original problem? 

   Auxiliary: Can you find a subproblem or side problem whose solution will help you solve 
your problem? 

 Relation: Can you find a problem related to yours that has already been solved and use 
that to solve your problem? 

 Specialization: Can you find a problem more specialized? 



 Decomposition: Can you decompose the problem and "recombine its elements in some 
new manner"? 

 Reversal: Can you start with the goal and work backwards to something you already 
know? 

 Drawing: Can you draw a picture of the problem? 

 Extension: Can you add some new element to your problem to get closer to a solution? 

 

 Working with others can be extremely helpful.  Having someone to bounce ideas off of, 
having someone to read your work, having someone whose work you can critique, are all 
beneficial.  But remember that your peers cannot do your learning for you.  Your parents 
cannot learn for you.  Your teacher cannot learn for you.  This is a struggle that you must go 
through yourself. Mathematics can be hard and confusing.  You are going to get stuck.  You 
have to give yourself somewhere to go.  You have to have the tenacity to get yourself unstuck. 

 



A GEOMETRIC EXAMPLE 

 

Here we are looking at how the proof process should work and we’ll write out the 
completed final proof. Often this guide will leave questions open ended or fill-in-the-blank, but 
for now we’ll just walk through the process. 

Let’s consider a geometric example which requires knowing the basics of vectors.  

Prove that the diagonals of a parallelogram bisect one another. 

How should we approach this problem?  First we need to know the meanings of the 
words.  What is a parallelogram?  What are the diagonals?  What does it mean to bisect? This is 
a geometric problem so it is natural for us to draw a picture.  Once we do, we need to translate 
the words and images into mathematical symbols.  

Draw the picture. 

 

What things can we add to this picture?  We can draw the diagonals.  We can label the 
vertices.  We can draw arrows for vectors. 

 

This is a two-dimensional picture so we should be able to choose two vectors in this 
picture somehow and then reference all the other vectors here by those two.  It doesn’t really 

https://www.bing.com/images/search?view=detailV2&ccid=ANfAXQf/&id=5595E9221B90076DC3FF067A6D74E9E28E23F2ED&thid=OIP.ANfAXQf_SBYotksDZl-P1AEsDt&q=clip+art+parallelogram&simid=608022020695395782&selectedIndex=0


matter which two, as long as they’re not parallel.  For example, we could choose the vector 
from D to E and the vector from D to G but there is no one particular RIGHT answer for which to 
choose. We could also choose, say, E to G and F to D. 

Let’s say that u equals the vector from D to E and v equals the vector from D to G.  Add 
this information to your picture.  Also label the point of intersection of the diagonals.  Let’s call 
it I.  Using u and v, how do we represent the vector from D to F? the vector from D to G? the 
vector from E to G? the vector from E to D?  etc. Play around with these.   

You’ll notice that we don’t yet know how to write the vectors involving I in terms of u 
and v since we haven’t yet proven our proposition. Now, what do we want to show? 

We want to show that the vector from D to I is half of the vector from D to F and we 
want to show that the vector from E to I is half the vector from E to G.  How do we represent 
half the vector from D to F? How do we  represent half the vector from E to G?  Add these 
vectors to your list.  Now try representing various vectors in the picture. In terms of u and v, 
what happens when we add the vector from D to E and half the vector from E to G? 

Now let’s try to put the pieces together.  When we add the vector from D to E and half 
the vector from E to G, we should land at I.  In terms of u and v, this should be u + ½(v – u).  
Simplify this.  Is it in the direction of D to F?  Does it give us I? 

Finally, let’s write our proof. 

Proof: Given the parallelogram DEFG, let u be the vector from D to E and v be the vector 
from D to G. Then v – u is the vector from E to G and v + u is the vector from D to F. u + ½(v – u) 
= ½(v + u) is then a vector from D to a point on the diagonal from E to G. Since v + u is the 
vector from D to F, this point is also on the diagonal from D to F, making this the point of 
intersection of the diagonals.  The vector from E to this point is ½ the vector from E to G and 
the vector from D to this point is ½ the vector from D to F.  This shows that the diagonals of the 
parallelogram bisect one another. 

 



A LINEAR INDEPENDENCE EXAMPLE 

 

 Now let’s consider an example from early in the course involving linear independence. 

Question: If u, v, w ∈ Rn are linearly independent, does it follow that (u + v), (v + w), 
and (u + w) are also linearly independent?  If the implication holds, prove it.  If the implication is 
false, provide a counterexample. 

 

 It is certainly reasonable to start by looking at some examples in R3 or R4 or R5 (why 
can’t we look at examples in R2?). Let’s ask the following questions and make sure that we 
know the answers before moving on.  How do we test for a linear independence?  Along the 
same lines, what do we know about vectors which are linearly independent?  To test for the 
independence of (u + v), (v + w), and (u + w), what equation do we need to set up?  Can this 
equation be transformed into an equation about u, v, and  w?  Why would we do this?  What 
system of equations does this lead to?  How many techniques do we have to test for the 
number of solutions to this system?  How can we put all of this together?  With these pieces, 
try writing a proof or finding a counterexample. 

 Once you’ve attempted your proof or found your counterexample, compare it to the 
following: 

  

 Answer: Consider the equation c1(u + v) + c2(v + w) + c3(u + w) = 0.  This is equivalent to              
(c1 + c3)u + (c1 + c2)v + (c2 + c3)w = 0.  Since u, v, and w are linearly independent, (c1 + c3),           
(c1 + c2), and  (c2 + c3) are each equal to zero.  This is a linear system of three equations in three 
unknowns: 

c1 +        c3 = 0 

c1 + c2        = 0 

       c2 + c3 = 0 

 Using either Gaussian elimination or noting that the determinant of the associated 
matrix is not zero, we get c1 = c2 = c3 = 0.  This implies that (u + v), (v + w), and (u + w) are 
linearly independent. 



ANOTHER LINEAR INDEPENDENCE EXAMPLE 
 Now let’s try to do a guided proof. Again, make sure to answer all of the questions 
leading us to the proof. Then fill in the blanks in the proof and pay attention to how the proof 
itself is constructed. 

 

Prove: Every subset of a finite linearly independent set is linearly independent 

 

 Let’s start by giving names to the set and the elements of the set.  I’m going to choose 
to call the set U and the elements of the set u1, u2, …, un.  To prove something for every subset 
it suffices to prove it for a generic subset.  So let V be any subset of U and call the elements of 
the subset v1, v2, …, vm. Vc ( V complement ) is the set of elements in U which are not in V. Let’s 
call the elements of Vc vm+1, …, vn.  Note that the sets {ui} and {vj} are the same but probably in 
different orders. 

Now, what does it mean for the set U to be linearly independent? 

 

____________________________________________________________________________ 

 

What does it mean for the set V to be linearly independent? 

 

____________________________________________________________________________ 

 

Think about how we can connect these two.   

We’re going to use the word “complement” and the phrase ”proper subset.” What do they mean? 

 

 

PROOF 

 

 The empty subset and the subset of all elements trivially satisfy the theorem.  Let U be a 

finite linearly independent set with elements ______________________ and let V be a proper 



nonempty subset of U with elements _____________________. Let Vc be the complement of V 

in U. It has elements _________________. The set {u1, u2, …, ____} is the same as the set {v1, 

v2, …, ___}, so v1, v2, …, vn are linearly _______________. Let c1v1 + c2v2 + … + cmvm = _____. 

Then c1v1 + c2v2 + … + cmvm + 0 vm+1 + … + ______ = _____. v1, v2, …, vn are 

____________________, so c1 = c2 = cm = 0 = 0 = … = 0. But this means that ____, ____, …, ____ 

are linearly independent. Since the empty set, U, and any nonempty subset are linearly 

independent, every subset of a finite linearly independent set is linearly independent.  



PROOF BY CONTRADICTION 

 
 The proofs we have seen to this point have been constructive in nature. We started 
from given information and deduced our conclusion. There are a couple of other approaches to 
writing proofs, one of which is proof by contradiction. 

As noted above, proof by contradiction is the logical contrapositive.  When might we use 
this?  Mathematics often distinguishes between something and its opposite.  For example, 
rationals and the irrationals, something happens or it does not, true or false.  Sometimes it is 
easier to work on one side than it is on the other.  The rationals have a lot of structure, but the 
irrationals do not.  If you roll a pair of dice five times, it is easier to computer the probability of 
never rolling a 12 than of rolling at least one 12. 

 Let’s look at a classical example, not from linear algebra. 

THEOREM: There are an infinite number of primes. 

 Which is easier to work with, an infinite number or a finite number?  The answer is a 
finite number because then we can just list them out.  What is the logical implication that we’re 
trying to prove?  If the mathematics we have developed to this point is correct then there are 
an infinite number of primes.  What is the contrapositive?  Under the format P ⟹ Q, P here is 
“the mathematics we have developed to this point is correct” and Q is “there are an infinite 
number of primes”.  Remember that the contrapositive is ~Q ⟹ ~P. ~Q is “there are a finite 
number of primes” and ~P is “the mathematics we have developed to this point is not correct”.  
Note that ~Q is now included in the mathematics we have developed to this point because it’s 
the given in our logical implication. This phrase, “the mathematics we have developed to this 
point is not correct” has two possibilities.  The first possibility is that there’s something 
fundamentally wrong with mathematics.  The second possibility is that our assumption ~Q is 
not correct.  We work from the presumption that the first possibility has been addressed and 
disposed of.  This leaves the second possibility which would be a contradiction of our 
assumption.  Hence the phrase, “proof by contradiction”.  The idea is to assume ~Q and show 
that this leads to a contradiction. 

  IDEA OF PROOF OF THEOREM: Assume that there are a finite number of primes.  
List them out.  We need to give them names.  A standard way to create a list of unknown values 
is to choose a variable and then use subscripts.  Standard letters for primes are p and q.  So let’s 
refer to our primes as p1, p2, …, pn, where n is the finite number of primes which exist.  
Remember that this was the point of choosing proof by contradiction, so that we can work with 
a finite list of primes.  We obviously don’t know exactly how many there are, but it is some 
number, so we give it a name.  The letter n is common for enumeration.  Now we have to figure 
out what we’re going to do with these primes.  What contradiction might we be looking for?  



We know that ultimately we think that there are an infinite number of primes but we only have 
a finite list.  A bunch of them must be missing.  So let’s find a missing prime.  The idea that 
we’re going to use is that two consecutive numbers cannot both be multiples of three or 
multiples of five or multiples of any other prime.  Is there a number that is a multiple of all the 
primes in our list?  Sure, multiply them all together.  This product is a multiple of each of the 
primes.  But that means that the next number is not a multiple of any of the primes.  That’s a 
problem because every number not on the list has to factor into a product of primes which are 
on the list.  This means that it has to be a multiple of some prime on the list.  There’s our 
contradiction.  Now let’s put all of this together into a nice clean proof. 

  PROOF OF THEOREM: Assume that there are only a finite number of primes.  Call 
them p1, p2, …, pn.  Consider the product of all the primes p1p2…pn and the number following it, 
p1p2…pn + 1.  Each prime is a factor of the product, so no prime is a factor of p1p2…pn + 1.  This 
is a contradiction as every integer has a prime factorization.  Therefore, there are an infinite 
number of primes.  



PROOF BY INDUCTION 

 

 Another method of proof is proof by induction. This only works when we have a list of 
statements we wish to prove and each statement depends on the one before it. 

Proof by induction is not the same thing as inductive reasoning.  Inductive reasoning is 
considered in a previous section where we discuss how proof can never be done by inductive 
reasoning unless we can examine every single example.  Proof by induction, however, is lining 
up a sequence of statements, showing that the truth of a statement in the sequence implies the 
truth of the next statement in the sequence, and showing that the first statement is true.  An 
analogy is to think of the statements as dominoes.  We line up the dominoes and push the first 
one to knock them all down. 

 Let’s say that we have a sequence of statements, P1, P2, …. Lining up the dominoes is to 
show the inductive step that Pn ⟹ Pn+1, i.e., if statement Pn is true then statement Pn+1 is true.  
Pushing the first domino is showing that statement P1 is true. 

 Here’s an example:  

Prove: If A is an invertible matrix, then An is an invertible matrix with (An)-1 = (A-1)n  

for all positive integers n. 

 What tips us off that this might be appropriate for proof by induction?  We already 
know that this is true for n = 1 because that is just the statement that A is invertible.  And this is 
really a sequence of statements, P2 is (A2)-1 = (A-1)2, P3 is (A3)-1 = (A-1)3, etc.  So what do we 
need?  We have the truth of P1, which is A-1 = A-1.  Now we need Pn ⟹ Pn+1.  In other words, we 
need to show that if (An)-1 = (A-1)n then (An+1)-1 = (A-1)n+1.  How do we do that?  Think about it 
and then let’s write our proof. 

 Proof:  1) A is invertible. (A1)-1 =(A)-1 = (A-1) = (A-1)1 

  2) Given (An)-1 = (A-1)n, (An+1)-1 = (AnA)-1 = A-1(An)-1 = A-1(A-1)n = (A-1)n+1 

   By induction, our statement is proven.   

 Here’s another example where we need to be familiar with matrix multiplication:  

Show that �1 1
0 1�

𝑛𝑛
= �1 𝑛𝑛

0 1� , 𝑛𝑛 = 1,2,3, … 

 As above, this looks to be appropriate for proof by induction.  What is our initial 
statement?  Is it true?  What is the inductive step?  Let’s write our proof. 

   



Proof:  1) �1 1
0 1�

1
=  

    _________________ 

  2) Given �1 1
0 1�

𝑛𝑛
= �1 𝑛𝑛

0 1�,    �1 1
0 1�

𝑛𝑛+1
= �1 1

0 1�
___
�1 1

0 1�
___

 

 

= � 
___ ___
___ ___ ��

 ___ ___
 ___ ___ � = � 

___ ___
___ ___ � 

 By induction, our statement is proven. 



VECTOR SPACES WITH NO ADDITIONAL STRUCTURE 

 
 Something to keep in mind is that at the vector space level every n-dimensional vector 
space over the reals is exactly the same as every other n-dimensional vector space over the 
reals.  You may be thinking that the space of 2 X 2 matrices, M2,2, is different from R4.  Both are 
4-dimensional spaces, but you can multiply matrices, whereas you cannot multiply vectors in 
R4.  That’s true, but that multiplication is not part of the vector space structure.  The vector 
space structure is only about linear combinations of the vectors.  Additional structure, such as 
an inner product or vector multiplication, is very important, but it is not part of the vector space 
structure itself.  This can be confusing because we do a lot of matrix manipulation in dealing 
with vector spaces.  For example, the standard basis for R4 is e1 = (1,0,0,0), e2 = (0,1,0,0),                    
e3 = (0,0,1,0), and e4 = (0,0,0,1).  So when we want to represent (1,2,3,4) in vector form relative 

to this basis, it’s easy.  It’s�
1
2
3
4

�.  The standard basis for M2,2 is e11 = �1 0
0 0�, e2 = �0 1

0 0�,               

e3 = �0 0
1 0�, and e4 = �0 0

0 1�.  Now when we want to represent �1 2
3 4� in vector form relative 

to this basis, we get the same thing, �
1
2
3
4

�.  In both cases, if we want to use matrices to 

manipulate the vectors in the vector spaces, it’s this form, �
1
2
3
4

�, that we need to work with. 

 

 Once we start adding more structure, things get more complicated.  In general, the 
more structure you impose, the mathematical places to which it is applicable become fewer but 
the theorems become sharper and more abundant.  



MATRIX MULTIPLICATION 

 
 Part of the skill in developing and writing proofs is in how one thinks of the concepts 
involved. Here’s a discussion on how to think about matrix multiplication. 

Given matrices A and B, the product AB is defined to be the matrix C = [ cij ], where cij is 
the dot product of the ith row of A and the jth column of B.  This definition is sometimes the way 
to think about the product but there are two other productive ways to see it.  You can think of 
the matrix A acting on the rows of the matrix B or you can think of the matrix B acting on the 
columns of the matrix A.  The first row of the matrix C is a linear combination of the rows of the 
matrix B.  The coefficients of the linear combination are the elements of the first row of the 
matrix A.  Similarly, the first column of the matrix C is a linear combination of the columns of 
the matrix A.  The coefficients of the linear combination are the elements of the first column of 
the matrix B. 

 For example, if A = �
1 3 −2
2 1 0
−1 0 4

� and B = �
−1 2 4
0 1 2
3 −5 3

�, then AB = �
−7 15 4
−2 5 10
13 −22 8

�. 

Notice that [−7 15 4] = 1[−1 2 4] + 3[0 1 2] − 2[3 −5 3] and that 

                                     �
−7
−2
13
� = −1 �

1
2
−1

� + 0 �
3
1
0
� + 3 �

−2
0
4
�.   

Of course, there’s nothing special about the first row or first column. The ith row of C is still a 
linear combination of the rows of B, but now the coefficients are the elements of the ith row of 
A. The jth column of C is still a linear combination of the columns of A, but now the coefficients 
are the elements of the jth column of B. 

 Thinking of matrix multiplication in these various ways can sometimes help in 

constructing proofs.  For example, in the linear system �
𝑎𝑎11𝑥𝑥 + 𝑎𝑎12𝑦𝑦 = 𝑐𝑐1
𝑎𝑎21𝑥𝑥 + 𝑎𝑎22𝑦𝑦 = 𝑐𝑐2

, we may want to 

know which values of 𝑐𝑐1 and 𝑐𝑐2 make the system consistent.  In matrix multiplication form this 

is �
𝑎𝑎11 𝑎𝑎12
𝑎𝑎21 𝑎𝑎22� �

𝑥𝑥
𝑦𝑦� = �

𝑐𝑐1
𝑐𝑐2�.  Instead of thinking of this product as a collection of dot products or of 

the matrix A =�
𝑎𝑎11 𝑎𝑎12
𝑎𝑎21 𝑎𝑎22� acting on B =�

𝑥𝑥
𝑦𝑦�, let’s think of B acting on the columns of A.  This says 

that �
𝑐𝑐1
𝑐𝑐2� = 𝑥𝑥 �

𝑎𝑎11
𝑎𝑎21� + 𝑦𝑦 �

𝑎𝑎12
𝑎𝑎22�.  It is immediate from this that �

𝑐𝑐1
𝑐𝑐2� is a linear combination of the 

columns of A and hence is in the column space of A.  If we consider all the possible values of 𝑥𝑥 
and 𝑦𝑦, we see that the values of 𝑐𝑐1 and 𝑐𝑐2 which make the system consistent are exactly those 

for which �
𝑐𝑐1
𝑐𝑐2� Is in the column space of A. 



 Here’s another example.  

 Prove: If A and B are matrices such that B has a column of zeroes and the product AB is 
defined, then AB also has a column of zeroes. 

 Do we want to think of A acting on the rows of B or B acting on the columns of A? Either 
will work, but if the ith column of B is the column of zeroes, how does B act on the columns of A 
to generate the ith column of AB? Let’s put this together to generate our proof. 

 Proof: Let u1, …, un be the columns of A and let vi be a column of zeroes of B. Then vi = 

�
𝑏𝑏1𝑖𝑖
…
𝑏𝑏𝑛𝑛𝑛𝑛

� = �
0
…
0
�. The ith column of AB is b1iu1 + … + bniun = 0u1 + … + 0un = �

0
…
0
�. 

 

 On the other hand, if A and B are matrices such that B has a row of zeroes and the 
product AB is defined, then do we get a row of zeroes in AB? Remember that the columns of B 
act on the columns of A and the rows of A act on the rows of B, so this doesn’t sound too 
promising. To show that a hypothesis fails, all we have to do is find one example where the 
hypothesis is not true. The opposite of a statement always being true is not that it is always 
false, it’s that it is false at least once. Can you find such an example here? Keep it simple and 
look at small matrices. 



COMMUTATIVE DIAGRAMS 

 

 Visual aids are often helpful in mathematics.  When we talk about mappings or 
functions we need to know what space we’re mapping from, what space we’re mapping to, and 
what the mapping does to each element.  Often, multiple mappings are involved in our work.  
Diagrams can help us keep track of these mappings.  To designate a mapping from A to B, we 
write 

𝐴𝐴 → 𝐵𝐵 

We may position these arrows pointing left, right, up, down, or diagonally.  In general, 
we draw our diagrams in whatever way seems most clear to us.  Sometimes we may have 
different paths to get from one place in the diagram to another.  Typically, we want the 
diagram to be independent of path.  If all directed paths in the diagram with the same 
beginning points and endpoints give the same result then we say that the diagram is 
COMMUTATIVE. 

 As an example, consider the following diagram where 𝑈𝑈 and 𝑉𝑉 are vector spaces, 𝑇𝑇 is a 
linear transformation from 𝑈𝑈 to 𝑉𝑉, and 𝑇𝑇 × 𝑇𝑇 is the mapping from 𝑈𝑈 × 𝑈𝑈 to 𝑉𝑉 × 𝑉𝑉 defined by 
(𝑇𝑇 × 𝑇𝑇) (𝑢𝑢1,𝑢𝑢2) = (𝑇𝑇(𝑢𝑢1),𝑇𝑇(𝑢𝑢2)): 

𝑈𝑈 × 𝑈𝑈
+
→ 𝑈𝑈 

𝑇𝑇 × 𝑇𝑇 ↓          ↓ 𝑇𝑇      

𝑉𝑉 × 𝑉𝑉
+
→ 𝑉𝑉 

 The only starting point and endpoint with multiple paths in this diagram is from 𝑈𝑈 × 𝑈𝑈 
to 𝑉𝑉.  The first path is 

𝑈𝑈 × 𝑈𝑈
+
→ 𝑈𝑈

𝑇𝑇
→ 𝑉𝑉 

which we get by going right and then down.  The second path is 

𝑈𝑈 × 𝑈𝑈
𝑇𝑇×𝑇𝑇
�⎯� 𝑉𝑉 × 𝑉𝑉

+
→ 𝑉𝑉 

which we get by going down and then right.  Saying that a linear transformation preserves 
addition is equivalent to saying that these two paths give the same results, which is equivalent 
to saying that this diagram commutes. 

 An example where commutative diagrams are helpful is in change of bases.  Let’s say for 
example that 𝑇𝑇 is a linear transformation from 𝑈𝑈 to 𝑉𝑉, that ℬ and ℬ′ are bases of 𝑈𝑈, and that 𝒞𝒞 
and 𝒞𝒞′ are bases of 𝑉𝑉. Let 𝑈𝑈ℬ be the set of vectors of 𝑈𝑈 represented as column vectors under 
the basis ℬ, 𝑈𝑈ℬ′ the set of vectors of 𝑈𝑈 represented as column vectors under the basis ℬ′, 𝑉𝑉𝒞𝒞 



the set of vectors of 𝑉𝑉 represented as column vectors under the basis 𝒞𝒞, 𝑉𝑉𝒞𝒞′ the set of vectors 
of 𝑉𝑉 represented as column vectors under the basis 𝒞𝒞′, and let 𝑃𝑃 be the change of basis matrix 
from ℬ to ℬ′, and Q be the change of basis matrix from 𝒞𝒞 to 𝒞𝒞′. Finally, let 𝑇𝑇ℬ𝒞𝒞 be the matrix 
representation of 𝑇𝑇 from 𝑈𝑈ℬ to 𝑉𝑉𝒞𝒞 and 𝑇𝑇ℬ′𝒞𝒞′ be the matrix representation of 𝑇𝑇 from 𝑈𝑈ℬ′ to 𝑉𝑉𝒞𝒞′. 

 Then we have the following commutative diagram which lets us see everything that is 
going on: 

𝑈𝑈ℬ  
               𝑇𝑇ℬ,𝒞𝒞                
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯�𝑉𝑉𝒞𝒞 

       𝑃𝑃 ↓↑ 𝑃𝑃−1                 𝑄𝑄 ↓↑  𝑄𝑄−1 

   𝑈𝑈ℬ′
             𝑇𝑇ℬ′,𝒞𝒞′               �⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯�𝑉𝑉𝒞𝒞′ 

 



LINEAR TRANSFORMATIONS 

 

 
 It is common in mathematics to look at maps between spaces.  Generally, the maps 
which are most interesting are those which preserve structure.  If the map is from a vector 
space to a vector space then we call the map a linear transformation.  What do we mean by 
preserving structure and what structure are we preserving?  Vector spaces have two 
operations: addition and scalar multiplication.  Preserving addition means that we get the same 
result whether we add first and then map or map first and then add.  Similarly, preserving 
scalar multiplication means that we get the same result whether we multiply by a scalar first 
and then map or map and then multiply by a scalar.   

Let’s call our vector spaces V and W and our map T.  We write this as T : V → W.  If T 
maps v to w, we write T(v) = w.  Preserving addition means that if v1 + v2 = v and if w1 + w2 = 
w, where T(v1) = w1 and T(v2) = w2, then T(v) = w.  Graphically this can be seen as the following 
commutative diagram.   

𝑈𝑈 × 𝑈𝑈
+
→    𝑈𝑈 

(u1,u2) → u1 + u2 

𝑇𝑇 × 𝑇𝑇 ↓          ↓ 𝑇𝑇      

𝑉𝑉 × 𝑉𝑉
+
→ 𝑉𝑉 

(T(u1),T(u2)) →T(u1)+T(u2) 

                   =  T(u1 + u2) 

 

Similarly, preserving scalar multiplication means that if cv1 = v and if cw1 = w where  
T(v1) = w1, then T(v) = w. Graphically this can be seen as the following commutative diagram.   

 

𝑅𝑅 × 𝑈𝑈
×
→    𝑈𝑈 

(c,v1) → cv1 

𝐼𝐼 × 𝑇𝑇 ↓          ↓ 𝑇𝑇      

𝑅𝑅 × 𝑉𝑉
×
→ 𝑉𝑉 

                 (c,T(v1)) →cT(v1) = T(cv1) 



Prove: If A = � 𝑎𝑎𝑖𝑖𝑖𝑖 �and B = � 𝑏𝑏𝑖𝑖𝑖𝑖 �are n x n upper triangular matrices, 

then AB is upper triangular. 

 

What does it mean to be upper triangular? Think about this both graphically and 
algebraically. What is the algebraic definition? For what values of i and j is aij = 0? bij? How does 
one compute the ijth entry of AB? 

Proof: Let cij be the ijth entry of AB. For i > j, cij = ∑ __________𝑛𝑛
𝑘𝑘=1  = ∑ __________𝑖𝑖−1

𝑘𝑘=1  + 
∑ __________𝑛𝑛
𝑘𝑘=𝑖𝑖 . But for 1 ≤ 𝑘𝑘 < 𝑖𝑖, aik = ____ and for 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑛𝑛, 𝑏𝑏𝑘𝑘𝑘𝑘 = _____. So       

∑ __________𝑖𝑖−1
𝑘𝑘=1  = ____ and ∑ __________𝑛𝑛

𝑘𝑘=𝑖𝑖  = ____,  and so ∑ __________𝑛𝑛
𝑘𝑘=1  = cij = ___.  By 

definition, AB is upper triangular. 



BILINEAR AND MULTILINEAR MAPS 

 
 A linear transformation, as we saw above, is a linear map from a vector space to 

a vector space.  If we want to combine two vectors to get an output, we can think of this as a 
map from the direct product of two vector spaces to a target space.  Again, we’re going to want 
the map to preserve linear structure.  This means that it needs to preserve the structure in the 
first space and in the second.  The dot product is a good example of this.  Distribution of the dot 
product across sums is the preservation of addition.  Factoring a constant from either of the 
factors is the preservation of scalar multiplication.  Let’s see how this looks in function notation.  
I will use D as the symbol for the mapping representing the dot product in Rn.  What should be 
the input for D?  What should be the output for D?  When we take the dot product of two 
vectors we get a scalar, so the input for D should be two vectors and the output for D should be 
a scalar.  So we have  

D: Rn x Rn → R, D(u,v) = u∙v. 

The distributive laws are then 

D((u1 + u2), v) = D(u1,v) + D(u2,v)            [(u1 + u2) ∙ v = u1 ∙ v + u2 ∙ v]   

D(u, (v1 + v2)) = D(u, v1) + D(u,v2)            [u∙ (v1 + v2) = u ∙ v1 + u ∙ v2] 

And factoring through a scalar is 

c D(u,v) = D(cu,v) = D(u,cv)                       [c(u∙v) = (cu)∙v =  u∙(cv)] 

Any map from the direct product of two spaces satisfying the above rules is called 
BILINEAR.  A map from the direct product of an arbitrary number of spaces which is linear in 
each component, similar to the above, is called MULTILINEAR.  The most common multilinear 
map in beginning linear algebra is the determinant, where the input vectors are the columns 
and the output is a scalar.  You can use the multilinearity of the determinant to develop 
Cramer’s Rule. 

 

  



CRAMER’S RULE 

 
 Cramer’s Rule says that given the system of equations 

𝑎𝑎11𝑥𝑥1 + 𝑎𝑎12𝑥𝑥2 + ⋯+ 𝑎𝑎1𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑏𝑏1 

𝑎𝑎21𝑥𝑥1 + 𝑎𝑎22𝑥𝑥2 + ⋯+ 𝑎𝑎2𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑏𝑏2 

⋮ 

  𝑎𝑎𝑛𝑛1𝑥𝑥1 + 𝑎𝑎𝑛𝑛2𝑥𝑥2 + ⋯+ 𝑎𝑎𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑏𝑏𝑛𝑛, 

 

if the system has a unique solution, then the solution is 

𝑥𝑥𝑖𝑖= 𝐷𝐷𝑖𝑖
𝐷𝐷

, where 

𝐷𝐷 = �
𝑎𝑎11 … 𝑎𝑎1𝑛𝑛
⋮ ⋮ ⋮
𝑎𝑎𝑛𝑛1 … 𝑎𝑎𝑛𝑛𝑛𝑛

�, 

and 𝐷𝐷𝑖𝑖  is the same as 𝐷𝐷, but with the 𝑖𝑖𝑡𝑡ℎ column 
𝑎𝑎1𝑖𝑖
⋮
𝑎𝑎𝑛𝑛𝑛𝑛

replaced by 
𝑏𝑏1
⋮
𝑏𝑏𝑛𝑛

. 

This is rather wordy and not always useful.  For larger systems being done by hand, 
computing the determinants is more cumbersome than doing Gaussian elimination.  But for 
systems of three equations and three unknowns it may be useful.  For systems of two equations 
and two unknowns it is very quick. 

How might we prove this?  The fact that it involves determinants certainly implies that 
we should write the system in matrix form.  Since we’re manipulating columns, we should be 
thinking of the determinant as a function of the columns.  We know that the determinant is a 
multilinear function of the columns.  Can we use that? 

In matrix form, our system is 

�
𝑎𝑎11 … 𝑎𝑎1𝑛𝑛
⋮ ⋮ ⋮
𝑎𝑎𝑛𝑛1 … 𝑎𝑎𝑛𝑛𝑛𝑛

� �
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
� = �

𝑏𝑏1
⋮
𝑏𝑏𝑛𝑛
� 

Again, we are focusing on columns.  We have seen that we can think of matrix 
multiplication in three different ways.  What are they?  Which one involves columns?  What 

does this tell us about the column vector �
𝑏𝑏1
⋮
𝑏𝑏𝑛𝑛
� as a linear combination of the column vectors of 



�
𝑎𝑎11 … 𝑎𝑎1𝑛𝑛
⋮ ⋮ ⋮
𝑎𝑎𝑛𝑛1 … 𝑎𝑎𝑛𝑛𝑛𝑛

�?  How can we use this in the definition of 𝐷𝐷𝑖𝑖?  Let’s put all of this together for a 

proof. 

PROOF OF CRAMER’S RULE 

Given the system of equations 

𝑎𝑎11𝑥𝑥1 + 𝑎𝑎12𝑥𝑥2 + ⋯+ 𝑎𝑎1𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑏𝑏1 

𝑎𝑎21𝑥𝑥1 + 𝑎𝑎22𝑥𝑥2 + ⋯+ 𝑎𝑎2𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑏𝑏2 

⋮ 

  𝑎𝑎𝑛𝑛1𝑥𝑥1 + 𝑎𝑎𝑛𝑛2𝑥𝑥2 + ⋯+ 𝑎𝑎𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑏𝑏𝑛𝑛, 

 

 

the matrix form is _________________________________________________. 

This means that �
𝑏𝑏1
⋮
𝑏𝑏𝑛𝑛
� = ___ �

___
⋮

___
� +  ____ �

___
⋮

___
� + ⋯+ ____ �

___
⋮

___
�. 

𝐷𝐷𝑖𝑖 =

⎣
⎢
⎢
⎡𝑎𝑎11 … 𝑎𝑎1(𝑖𝑖−1) 𝑏𝑏1 𝑎𝑎1(𝑖𝑖+1) … 𝑎𝑎1𝑛𝑛
𝑎𝑎21 … 𝑎𝑎2(𝑖𝑖−1) 𝑏𝑏2 𝑎𝑎2(𝑖𝑖+1) … 𝑎𝑎2𝑛𝑛
⋮

𝑎𝑎𝑛𝑛1 …
⋮ ⋮ ⋮

𝑎𝑎𝑛𝑛(𝑖𝑖−1) 𝑏𝑏𝑛𝑛 𝑎𝑎𝑛𝑛(𝑖𝑖+1)

⋮
… 𝑎𝑎𝑛𝑛𝑛𝑛⎦

⎥
⎥
⎤
.  Substituting for the𝑖𝑖𝑡𝑡ℎcolumn gives 

 

 

 

 

𝐷𝐷𝑖𝑖= 

 

_______________________________________________________________________. 

Multilinearity of the columns gives 

 

 

 



𝐷𝐷𝑖𝑖=                                                            + … +                                                            + ____ 𝐷𝐷 +  

 

________________________              _________________________ 

 

 

+                                                  + … +  

 

 

_______________________              __________________________ 

 

But we know that if two columns in a determinant are equal, then the determinant is ____.  So 
the above long equation simplifies to _____________.  We know that 𝐷𝐷 is not zero because 
____________________________________________. Solving for 𝑥𝑥𝑖𝑖  then gives us our result. 

 

 



INJECTIVITY 

 

 Injectivity is essentially the notion of the horizontal line test.  In linear algebra, we don’t 
have x- and y-axes to represent our inputs and outputs for mappings, but we still do have 
inputs and outputs.  The horizontal line test in college algebra is a visual way to check that no 
output can be associated with more than one input.  In linear algebra we have to write this 
condition algebraically. If T is a mapping from U to V, and v is any element of V which is in the 
range of T, we need to check that there can only be one element u in U mapping to v.  We do 
this by assuming that two outputs match; T(u1) = T(u2).  If these outputs are our v, then both u1 
and u2 must be our u.  In other words, if T(u1) = T(u2), then u1 = u2.  This is the definition we 
use for injectivity. 

 

T: U → V is INJECTIVE (is an INJECTION) if T(u1) = T(u2) implies u1 = u2. 

 

 As in college algebra, when a map as injective (one-to-one) it doesn’t destroy 
information.  For example, the function f(x) = x2 is not one-to-one because you get more than 
one input for a particular output.  If you know the square of a number is 9, you don’t know if 
the number is 3 or -3.  The mapping destroyed information about whether the number was 
positive or negative.  If our mapping T is a linear transformation from a finite dimensional 
vector space then being injective means that the range of T has the same dimension as the 
domain of T.  The linearity of T gives us an easy way to check for injectivity.  Let’s try to prove 
the following theorem: 

 

A linear transformation T: U → V is injective if T(u) = 0 implies u = 0. 

 

 What is the difference between this statement and our original definition?  In our 
original definition we had to consider any possible output.  Now we’re only concerned with an 
output of zero.  Why is that sufficient?  Think about it and try writing your own proof before 
reading the following. 

 Proof: If T(u) = 0 implies u = 0 and if T(u1) = T(u2), then T(u1) - T(u2) = 0. Linearity of T 
gives T(u1 - u2) = 0.  Our given implication gives us u1- u2 = 0, which implies u1 = u2.  By 
definition, T is injective.   

 



 Let’s try another proof.  This time we’ll talk through the ideas and I’ll provide a template 
for the proof.   

Let S: V → W and T: U → V be linear transformations. 

Prove that if S◦T is injective, then so is T. 

 

 First note that we can write our composition of transformations in the following way: 

𝑈𝑈
𝑇𝑇
→ 𝑉𝑉

𝑆𝑆
→𝑊𝑊 

 Using the idea that injective mappings do not destroy information, what does our 
theorem say?  It says that if we go from U to W along these arrows that we don’t destroy 
information, so we couldn’t have destroyed information with the first arrow.  This seems 
intuitively clear but, of course, we have to translate this into mathematical statements.  Using 
the definition of injectivity, what do we need to show that T is injective?  This gives us “two” 
elements of V, but we need to relate them to having “two” elements of W.  How can we take  
elements of V and push them forward into elements of W?  What does the injectivity of S◦T tell 
us?  First try writing your proof without referring to the following. 

 

 Proof: Given T(u1) = T(u2), then _____(u1) = _____(u2). By the injectivity of _______,  

_____ = _____. Therefore, T is __________________. 

 

 In this particular case, the proof was a lot shorter than the discussion. 



SURJECTIVITY 

 

 Injectivity is about not losing information in a mapping. Surjectivity is about having 
every element of the image space actually being in the range of the map. The definition of 
surjectivity is exactly as it seems it should be. 

 A map T: U → V is SURJECTIVE ( is a SURJECTION ) if for each v in V, there exists u in U 
such that T(u) = v. 

The image space of an injective linear transformation has to have dimension at least as 
big as the domain space and the rank of the transformation has to match the dimension of the 
domain space. 

The image space of a surjective linear transformation has to have dimension at least as 
small as the domain space and the rank of the transformation has to match the dimension of 
the range space. 

If a linear transformation is both injective and surjective, we say that it is BIJECTIVE. This 
means that the rank of the transformation matches the dimensions of the domain and range 
spaces and so each element of the range space is associated to exactly one element of the 
domain space and the transformation is invertible. 

Let’s try a proof involving surjectivity. 

Prove: If linear transformations T: U → V and S: V → W are both surjective,                   
then so is S ∘ T. 

Let’s start by drawing the diagram:   U 
𝑇𝑇
→ V 

𝑆𝑆
→ W.  

What are we trying to show? ______________________________________________ 

What does it mean that S is surjective? ______________________________________ 

What does it mean that T is surjective? ______________________________________ 

How can we put these together? ___________________________________________ 

 Now let’s write our proof. 

 



 Proof: Let w be an element of W. S is surjective means that there exists an element v of 

V such that ___________________. T is surjective means that there exists an element u of U 

such that ____________________. (S ∘ T)(u) = __________. By definition, 

_____________________________________. 



EIGENVALUES AND EIGENVECTORS 

 

 Eigen is German for own or inherent. So eigenvalues and eigenvectors are things 
inherent to a matrix as a linear transformation. As a linear transformation, a square matrix A 
sends a vector to another vector. If there is a direction that A stretches, then a vector in that 
direction is an eigenvector and the amount of stretch is the associated eigenvalue. In 
mathematical terms, λ is an eigenvalue associated to the eigenvector v if Av = λv. This leads to 
an appropriate way to find the eigenvalues. If Av = λv, then Av – λv = 0, so Av – λIv = 0, and       
(A – λI)v = 0. This means that v is in the nullspace of the matrix (A – λI), which means that         
(A – λI) is not invertible and so det(A – λI) = 0. 

 What kind of structure is attached to eigenvalues and eigenspaces? 

 Prove: If A is a matrix representing a linear transformation from V to W, and λ is an 
eigenvalue of A, then the eigenspace, Vλ, associated to λ is a subspace of V. 

 How do we show subsets of vector spaces to be subspaces? What two things about  Vλ 
do we need to show? 

 Proof: Let v1, v2 ∈ ______. A(___ + ___ ) = _____ + ______ = _____ + _____ = λ (______) 

so v1 + v2 _____________. Let c be a scalar. A(______) = cA(_____) = c_____ = λ______ so cv1 
___________.  

 

 Prove: If A is a matrix representing a linear transformation from V to W, and λ1 and λ2 
are distinct eigenvalues of A with corresponding eigenspaces Vλ1 and Vλ2, then Vλ1 ∩ Vλ2 = 0. 

 How do we show that the intersection of the eigenspaces is trivial?  What should be true 
about an element in the intersection as an element of Vλ1? What should be true about an 
element in the intersection as an element of Vλ2? 

 Proof: Let v ∈ ______. Since v ∈ ____, Av = ____.  Since v ∈ ____, Av = ____. This means 
Av = ____ = ____ and so (λ1 – λ2)___ = ____. λ1 – λ2 ≠ 0, so v = ___. This implies Vλ1 ∩ Vλ2 = 0. 



SIMILAR MATRICES 

 

 Matrices A and B, each n x n, are called SIMILAR if there exists an invertible matrix P 
such that B = P-1AP. Why is this a concept of interest? If we consider A and B as linear 
transformations and P as a change of basis, then A and B represent the same linear 
transformation, just as representations under different bases. The commutative diagram for 
this relationship is  

𝑉𝑉
   𝐵𝐵   
�⎯� 𝑉𝑉 

𝑃𝑃−1 ↑        ↑ 𝑃𝑃−1 

𝑃𝑃 ↓         ↓ 𝑃𝑃 

𝑉𝑉
   𝐴𝐴   
�⎯� 𝑉𝑉 

 Similarity is an equivalence relation, which means that we have the option to treat all of 
the matrices which are similar to a matrix A as a single algebraic object or we can exchange A 
for some other representative of this “object”. For example, if A is diagonalizable, then there is 
a diagonal matrix in this object to which A is similar. This diagonal matrix is generally much 
easier to work with than A. For example, if A is similar to the diagonal matrix D, then there 
exists P such that A = PDP-1. So what is Ak? Multiplying matrices tends to be difficult and raising 
matrices to powers consequently more so. But how about D? What is PDP-1 PDP-1? What can 
you then say about Ak? 

 It is also easy to see that similar matrices have the same characteristic polynomials and 
hence the same eigenvalues. Moreover, we can show the following. 

 Prove: If A and B are similar and λ is an eigenvalue of A and B, then the geometric 
multiplicity of λ is the same for both matrices. 

 How can we start? What is the geometric multiplicity? Is there a relationship between 
the eigenvectors of A and B? What is the relationship between A and B?  

 Proof: Let v be an eigenvector of A associated to λ and let P be a change of basis matrix 
such that A = PBP-1. Av = ______, so PBP-1v = ______.  Multiplying both sides on the left by ____ 
gives BP-1v = _____ = ______. By definition, ______ is an eigenvector of B associated to λ. For 
any set of independent eigenvectors, v1, …, vk , of A, associated to λ, this gives eigenvectors 
___, …, ____, of B, associated to λ. ____ is invertible, so these vectors are also independent. 



This means that the geometric multiplicity of λ for B is greater than or equal to the geometric 
multiplicity of λ for A. The same argument works for starting with eigenvectors of B, so the 
geometric multiplicity of λ for A is greater than or equal to the geometric multiplicity of λ for B. 
Together, these give our result. 



ABSTRACT VECTOR SPACES 

 

 We want to extend our ideas about vector spaces beyond Euclidean space. To that end, 
we define abstract vector spaces. Ultimately, we want a set of vectors and a set of scalars so 
that linear combinations are well behaved. The scalars need to be a field. For the beginning 
linear algebra course, that field is generally the real numbers or the complex numbers. First, 
let’s consider vector addition. We need that set with that operation to be an abelian group. 
That means we need the following. Given vectors u, v, w in V, 

1. u + v is in V     Closure under addition 
2. u + v = v + u `    Commutativity 
3. (u + v) + w = u + (v + w)   Associativity 
4. There exists 0, such that 0 + u = u  Identity 
5. There exists –u, such that –u + u = 0  Inverse 

 
We also need associativity of the scalars and distribution. Let c and d be scalars. 
 

6. cu is in V     Closure under scalar multiplication 
7. c(du) = (cd)u     Scalar associativity 
8. c(u + v) = cu + cv    Vector distribution 
9. (c + d)u = cu + du    Scalar distribution 

Finally, we need to make sure that scalar multiplication works the way it is supposed to. 

10. 1u = u 
 
Your textbook should have plenty of examples of abstract vector spaces. Function 
spaces are common vector spaces. One of the more important ones is the dual space. 
 
Let V be a finite dimensional real vector space. The dual space, V*, is the set of all linear 
maps of V into R, the set of real numbers. 
 
Prove: V* is a vector space with the same dimension as V. 
 
Proving that V is a vector space is simply a matter of checking that the above rules hold. 
To find the dimension of V* we can find a basis related to a basis for V. This dual basis 
should depend on the choice of basis for V. What is the simplest linear map which 



isolates the first basis element? The second, etc.? Use these. You need to show that 
these linear maps forma basis for the space. 



THE ADJOINT 

 

 The word “adjoint” is used in two different ways in linear algebra. The classical adjoint, 
also called the “adjugate”, is the transpose of the cofactor matrix. The adjugate can be used to 
compute the inverse of a square matrix. The other adjoint, however, is about the behavior of 
matrices in inner products. If we refer to the adjoint of A as A*, then for an inner product <,>, 
A* is defined to be the matrix so that for all vectors u and v for which the inner product is 
defined, <Au,v> = <u,A*v>. In other words, we get the same product whether we act on the left 
vector by A or on the right vector by its adjoint. If the inner product is the usual dot, what is the 
relationship between A and A*? 

 Prove: If <,> is the usual dot product over a finite dimensional real vector space, then  
A* = AT. 

 The idea here is pretty straight forward. Translate the dot product into a matrix product, 
reassociate the matrix with the second vector, and translate back. 

 

 An isometry is a map which preserves lengths. In the context of linear algebra, A is an 
isometry under the inner product <,> if  <Au,Av> = <u,v>. 

 For the next proof, we need to know the following: 

 Fact: If <u, Mv> = 0 for all u, v, then M = 0. 

 Proof: (by contradiction). Assume M ≠ 0. Then rank(M) ≠ 0 implies that there is a vector 
v such that Mv ≠ 0. Let u = Mv. <u,Mv> = <Mv,Mv> = 0. But the only vector for which <u,u> = 0 
is the zero vector, which contradicts our statement that Mv ≠ 0. Therefore, M = 0. 

 Prove: If <,> is the usual dot product over a finite dimensional real vector space, then A 
is an isometry if and only if A is an orthogonal matrix. 

 Again, the idea is straight forward. Use the adjoint to move the A from the first vector in 
the inner product to the second. What does it say? How can we take this statement and 
translate it to the fact we proved above? 



ADDITIONAL 

EXERCISES 



EXERCISE 1 

Prove that if A is an orthogonally diagonalizable invertible matrix, then A-1 is orthogonally 
diagonalizable 

 

 The first thing that we should notice about this problem is that we have a lot of 
information about A.  As usual, we want to make sure that we know what the words mean. 

What does it mean for A to be invertible?  

What does it mean for A to be diagonalizable? 

How is orthogonally diagonalizable different from just diagonalizable?   

 This is one of those problems where if we just do what the words tell us to do, 
everything falls into place. 

 

PROOF 

 

 A is orthogonally diagonalizable implies that there exists matrices Q and D such that 

______________ = A where Q is invertible and Q-1 = ______ and where D is _______________ 

and invertible with diagonal entries dii. D is invertible because __________________________ 

______________________________________ which implies dii ≠ ______ for all i. D-1 is also 

__________________ with diagonal entries _________. As above, ______________ = A with all 

matrices being invertible.  So A-1 = ____________ = ____________. By definition, A-1 is 

orthogonally diagonalizable. 



EXERCISE 2 

Prove that if A is nilpotent and diagonalizable, then A must be the zero matrix. 

 

 As usual, let’s start by thinking about what the statement says.  What does it mean for a 
matrix to be nilpotent?  What does it mean for a matrix to be diagonalizable?  We’re interested 
in both the ideas and the definitions.  Diagonalizable means that under an appropriate change 
of basis the matrix becomes diagonal, i.e.  all the entries not on the diagonal are zero.  What 
are the entries on the diagonal?  Do they have any significance?  We know that under a change 
of basis the characteristic polynomial stays the same.  But for a diagonal matrix the 
characteristic polynomial is very easy.  What is it?  This means that the diagonal entries are the 
eigenvalues.  Remember that the eigenvalues tell how much the matrix, as a linear 
transformation, stretches special directions, the eigenvectors.  But what does it mean for a 
matrix to be nilpotent?  As a linear transformation, if we apply it enough times it sends 
everything to zero.  So it eventually kills off all vectors, including the eigenvectors.  But each 
time we apply the matrix we just stretch an eigenvector by its eigenvalue.  What does this tell 
us about the eigenvalue? 

 After reasoning through the above, you may ask yourself why we need A to be 
diagonalizable.  As long as we have a basis of eigenvectors then that should be enough.  Is there 
a relationship between having a basis of eigenvectors and being diagonalizable? 

 This should cover the ideas behind the proof.  Now we need the definitions.   

How do we translate “A is nilpotent” into mathematics? _______________________________ 

How do we translate “A is diagonalizable” into mathematics? ___________________________ 

 

PROOF 

 

 A is nilpotent implies there exists n such that ____________________________. 

A is diagonalizable implies there exists an invertible matrix, P, and a diagonal matrix, D, such 

that ____________________________.  Substituting gives us (______)n = 0, which implies 

_________ = 0.  Multiplying both sides of this equation on the left by _______and on the right 

by _________ gives us the equation _______ = 0.  Let d be any diagonal entry of D.  Then dn = 

____, which implies d = ____.  This in turn implies that D is the ___________ matrix.  



Substituting this into the equation given by the definition of the A being diagonalizable, gives us 

A = __________ = ____, which was to be proven. 



IDEMPOTENT MATRICES 

 

 The word, idempotent, comes from roots meaning same power.  So idempotent 
matrices are those which when raised to powers stay the same.  In other words, a square 
matrix A is idempotent if A2 =A. 

 Let’s try a short proof involving this idea: 

 

Prove that the only invertible idempotent n x n matrix is the identity matrix. 

 

 What does it mean for A to be invertible?  This leads to what equation?  Since A2 =A, 
whenever we see A we can write A2 instead.  This is substitution.  Put this together and write a 
proof.  Once you have finished a proof compare it to the following: 

 

 A invertible means there exists A-1 such that AA-1 = I.  A idempotent means A2 =A. 
Substituting A2 for A gives us A2A-1 = I, which implies A(AA-1) = I, giving AI = I, and finally, A = I. 



INNER PRODUCT SPACES 

 

 An inner product is a generalization of the dot product. We want to add a relationship 
between the vectors in a vector space which gives us some geometry. What did the dot product 
give us? Lengths and angles. Recall that u∙u was the square of the length of u, so we needed 
that u∙u be a nonnegative real number which is only 0 when u = 0. We also needed the dot 
product to act like a product in relation to addition, so that the dot product is bilinear. And 
finally, the angles and lengths didn’t change when we reversed the order of the vectors, so     
u∙v = v∙u. 

 In summary then, we define an inner product on V as a map <∙,∙> : V x V → R such that 

1) <v,v> ≥ 0 with equality if and only if v = 0 
2) <v,w> = <w,v> 
3) <v1 + v2,w> = <v1,w> + <v2,w> 
4) <cv,w> = c<v,w> 

Let’s check a couple of spaces with inner products. 

Prove: If 𝑓𝑓(𝑥𝑥),𝑔𝑔(𝑥𝑥) are functions (i.e., vectors) in the space of real valued continuous 

functions on the interval [0,1], C[0,1], show that < 𝑓𝑓,𝑔𝑔 >= ∫ 𝑓𝑓𝑓𝑓1
0  𝑑𝑑𝑑𝑑 is an inner product on 

C[0,1]. 

Prove: If V and W are real vector spaces where W has an inner product <∙,∙> and if T: V → W 
is a linear transformation, show that < v1,v2>’ = <T(v1), T(v2)> defines an inner product on V 
if and only if T is one-to-one. 
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